
1

CRTOS Library for PIC32

2015-05-25

Content

1 Important .. 3

2 Overview of CRTOS types, constants, variables and functions 3

3 Introduction .. 4

3.1 Why should I use CRTOS? ... 4

3.2 CRTOS Fundamentals ... 5

4 CRTOS Features ... 7

5 CRTOS Library files .. 7

6 CRTOS Usage in a program .. 8

6.1 Overview ... 8

6.2 Example .. 9

6.3 Explanation of example code ... 11

7 Tasks .. 13

7.1 Creation of a task .. 13

7.2 Starting a task ... 13

7.3 Starting a task with an initial delay... 14

7.4 Stopping a task ... 14

7.5 Stopping the current task and starting another one .. 14

7.6 Task States .. 14

7.7 Task Priorities ... 14

7.8 Execution Eligibility of a task .. 15

7.9 Task Yielding to the scheduler .. 16

7.10 Tasks are called indirectly ... 17

8 Semaphores .. 17

8.1 Creation of a Semaphore .. 17

8.2 Signaling of a semaphore ... 17

8.3 Waiting for a Semaphore .. 18

8.4 Semaphore timeout .. 18

8.5 Clearing a semaphore ... 19

2

9 The “Always” procedure .. 19

10 CRTOS Configuration ... 20

10.1 CRTOS Functionalities ... 20

10.2 CRTOS sizes ... 21

11 Appendixes .. 22

11.1 Programmers Reference ... 22

11.2 Nomenclature ... 28

11.3 Task (context) switching mechanism ... 30

11.4 Examples ... 31

3

1 Important
Since the any project using CRTOS will include several include files (*.inc) and at least one project level defines

(.pld) file, it is necessary to have the “Always build all files in the project” compiler option (IDE menu: Tools,

Options, Output settings) set to ON.

2 Overview of CRTOS types, constants, variables and functions

Item Page
Types 22

TOS_Task 22
TOS_BinarySemaphore 22
TOS_CountingSemaphore 22
TOS_Semaphore 22
TOS_Priority 22
TOS_State 22

Constants 23
OS_TASKS_COUNT 23
OS_PRIORITY_COUNT 23
OS_EVENTS_COUNT 23
OS_TASK_STACKSIZE 23
OS_NO_TASK 23
OS_NO_EVENT 24
OS_NO_TIMEOUT 24
st_DESTROYED 24
st_STOPPED 24
st_DELAYED 24
st_WAITING 24
st_ELIGIBLE 24
st_RUNNING 24

Variables 23
OS_Timer_IE_bit 23
OS_AlwaysProcedure 23

Procedures and functions 24
OS_Init 24
OS_Run 24
OS_CreateTask 24
OS_StartTask 25
OS_StartTask_Delay 25
OS_StopTask 25
OS_ReplaceTask 25
OS_CurrentTask 25
OS_TaskRunning 25
OS_TaskState 25
OS_Yield 26
OS_Delay 26
OS_CreateBinarySemaphore 26
OS_CreateCountingSemaphore 26
OS_SignalSemaphore 26
OS_SignalSemaphore_ISR 26
OS_WaitSemaphore 26
OS_ReadSemaphore 27
OS_ReadCountingSemaphore 27

4

OS_TrySemaphore 27
OS_TimeOut 27
OS_SetPriority 27
OS_Priority 28
OS_TimerInterrupt 28

3 Introduction

Acknowledgement:

The specification of CRTOS is derived from PRTOS which was written by John Barrat in PDS Basic. Also some parts

of text in this document are extracted (and are sometimes adapted) from the document “PRTOS, Real Time

Operating System for Proton Development System” written by John Barrat.

John also contributed a lot to the development of the library, test projects and examples. Thanks John!

This RTOS is a Cooperative Real Time Operating System designed for and written specifically in mikroPascal from

mikroElektronika. The system uses cooperative as opposed to pre-emptive scheduling which means that the

application code you write has to voluntarily release back to the operating system at appropriate times.

Writing code for a RTOS requires a different mindset from that used when writing a single threaded

application. However, once you have come to terms with this approach you will find that quite complex real

time systems can be developed quickly using the services of the operating system.

A cooperative operating system is the simplest one imaginable. The tasks running under this type of RTOS are not

interrupted by the RTOS to give execution time to another task (as with the preemptive Real Time OS), instead,

tasks always have to hand back control to the operating system (i.e.“yield” to the operating system) before the

CRTOS gives execution to another task.

So, simple enough. This means however that each single task must yield to the OS in an acceptable time. If a task

is too time consuming then it has to be split up into several subtasks, each with an acceptable yield time. Hence

the term cooperative: the tasks have to cooperate to make things work well.

The whole library is targeted at the PIC32 series of MPUs. It is written mostly in mikroPascal (only a very small

part in assembler), so changes should be easy to implement.

3.1 Why should I use CRTOS?

CRTOS can give you the potential opportunity to squeeze more from your PIC than you might expect from your

current single threaded application. For example, how often do your programs spend time polling for an input

or an event. If you could have the Operating System tell you when an event has taken place you could use that

polling time to do other things. This applies equally well to delays. By using CRTOS you can write programs

which appears to be doing many things all apparently at the same time.

Some of this can be achieved in a single threaded program by using interrupts but by using RTOS together with

interrupts you will have be able to quickly develop responsive applications which are easy to maintain.

5

3.2 CRTOS Fundamentals

This section describes the fundamentals of CRTOS.

A typical program written in mE’ mikroPascal would use a looping main program calling subroutines from the

main loop. Time critical functions would be handled separately by interrupts. This is fine for simple programs but

as the programs become more complex the timing and interactions between the main loop background and the

interrupt driven foreground become increasingly more difficult to predict and debug.

CRTOS gives you an alternative approach to this where your program is divided up into a number of smaller well

defined functions or tasks which can communicate with each other and which are managed by a single central

scheduler.

3.2.1 Some Basic Definitions

The fundamental building block of CRTOS are Tasks (see also sections 3.2.2 and 7). Tasks are a discrete set of

instructions that will perform a recognized function, e.g. Process a keypad entry, write to a display device, output

to a peripheral or port etc. It can be considered in effect a small program in its own right which runs within the

main program. Most of the functionality of a CRTOS based program will be implemented in Tasks.

In CRTOS a Task can have a Priority (see section 7.7) which determines its order of precedence with respect to

other tasks. Thus you can ensure your most time critical tasks get serviced in a timely manner.

Interrupts are events which occur in hardware which cause the program to stop what it was doing and vector

to a set of instructions (the Interrupt service routine ISR) which are written to respond to the interrupt. As

soon as these instructions have been executed the control is returned to the main program at the point where

it was interrupted. This is no different in CRTOS.

A Task switch (see also section 7.9) occurs when one task is Suspended and another task is Started or Resumed.

This is core functionality to a RTOS. In the CRTOS the action of suspending is co-operative. This means that your

tasks must be written in a way that it will Yield back to CRTOS in a timely manner. If the task fails to Yield back the

system will fail as the non-yielding task will run to the exclusion of all the others.

Tasks can call for a Delay (see also section 7.9.2) which will suspend the task until the delay period has expired

and will then resume from where it left off. This is similar to the Delay_ms or Delay_us functions in mP except

that during the delay the processor can be assigned another task until that delay period is up. In practice it is most

likely that delays will be defined in the ms or 10s of milliseconds as delays in the low microseconds would make

Task switching (including its context switching) very inefficient.

An Event is the occurrence of something such as a serial data receipt, or an error has occurred or a long

calculation or process has completed. An event can be almost anything and can be raised (Signaled) by any part of

the program at any time. When a task waits on an event it can assign a Timeout so that the task can be released

from being stuck waiting for an event which isn’t going to happen for some reason.

Inter-task Communication provides a means for tasks to communicate with other tasks.

CRTOS supports Semaphores (see section 8).

6

Semaphores can take 2 forms, Binary and Counting Semaphore. A binary semaphore can be used to signal

actions like a button has been pressed or a value is ready to be processed. The task waiting on the event will then

suspend until the event occurs when it will run. A counting semaphore can carry a value; typically it could be used

to indicate the number of bytes in an input buffer. When the value of a counting semaphore has reached zero it

becomes "not signaled".

There are a number of other features which are part of CRTOS but these will be covered later. However, there is

one important aspect that it is important to appreciate before we get into more detail. In a multi tasking

environment such as RTOS it is quite conceivable that two tasks could make a call to the same function. This

requires that the function can be used simultaneously by more than one task without corrupting its data. mP does

not naturally generate re-entrant code and you will have to write any functions which require reentrancy with

great care or protect the situation from occurring. However with CRTOS’s co-operative scheduling or through the

use of events this problem can be circumvented.

3.2.2 More about Tasks

Example of a task in CRTOS:

procedure UsefulTask:

begin

 while true do

 begin

 // do something useful(payload)

 OS_Yield; // yield to CRTOS, context switch

 end;

end;

This code will perform its operation and then Yield to the operating system. CRTOS will then decide when to

run it again. If there are no other tasks to run it will return to the original task. In a co-operative RTOS every task

must make a call back to the operating at least once in its loop. OS_Yield is one of a number of mechanisms for

relinquishing control back to the operating system.

In its simplest form a multitasking program could comprise just 2 or more tasks each taking their turn to run in

a Round-Robin sequence. This is of limited use and is functionally equivalent to a single threaded program

running in a main loop. However, CRTOS allows Tasks to be assigned a priority which means you can ensure

that the processor is always executing the most import task at any point in time.

Clearly, if all your tasks were assigned the highest priority you would be back to running a round-robin single

loop system again but in real life applications, tasks only need to run when a specific event occurs. E.g. User

entered data or a switch has changed state. When such actions occur the task which needs to respond to that

action must run. The quicker the response needed then the higher the priority assigned to the task. This is

where a multitasking RTOS starts to show significant advantages over the traditional single threaded structure.

More task details can be found in section 7.

7

4 CRTOS Features
CRTOS supports the following features:

 Task priorities

 Tasks can have local variables of which the values are preserved between task invocations

 Unconditional yielding to the CRTOS Scheduler

 Timed yielding to the CRTOS Scheduler (i.e. “delay” performed by the Scheduler)

 Binary semaphores

 Counting semaphores

 Waiting for semaphores with or without timeout

 Clearing semaphores

 Starting and stopping tasks

 Starting tasks with an initial delay

 Signaling semaphores from within an Interrupt Service Routine

 An “Always” procedure can be called in every scheduler loop

5 CRTOS Library files

The CRTOS library consists of 1 pascal (.mpas) file and 2 include (.inc) files, all to be placed in the same directory.

The library files are:

CRTOS.mpas : the main library file

CRTOS_Get_Registers.inc and CRTOS_Restore_Registers.inc : code that is included in CRTOS.mpas.

Make sure the CRTOS.mpas library file is included in mP’s project manager in the IDE (if CRTOS has not been

installed as a “library”), or checked in the library manager (if CRTOS has been installed as a “library” with the

package manager).

Important:

Since the project will include several include files (*.inc) and at least one project level defines (.pld) file it is

necessary to have the “Always build all files in the project” compiler option (IDE menu: Tools, Options, Output

settings) set to ON.

Attention for package (.mpkg) users:

After installing the package please copy all "*.inc" files from the directory

“C:\Users\Public\Documents\Mikroelektronika\mikroPascal PRO for

PIC32\Packages\CRTOS_PIC32\examples\CRTOS include files” to the directory

“C:\Users\Public\Documents\Mikroelektronika\mikroPascal PRO for

PIC32\Packages\CRTOS_PIC32\Uses“ (windows 7 example given).

8

6 CRTOS Usage in a program

Important:

Since the project will include several include files (*.inc) and at least one project level defines (.pld) file it is

necessary to have the “Always build all files in the project” compiler option (IDE menu: Tools, Options, Output

settings) set to ON.

6.1 Overview

In a user application the following has to be done:

 The CRTOS configuration for the project has to be defined: two project files need to be made and

entered in the Project Manager: “CRTOS_Defines.pld” and “CRTOS_Sizes.inc”, see section 10 for the

details.

 The task variables and the semaphore variables (if used) have to be declared.

 The CRTOS “Timebase”: The routine “OS_TimerInterrupt” has to be called regularly (by a timer interrupt)

if timeouts (while waiting for a semaphore signaling) or “delays” via the Scheduler are “on” in the

configuration. In all examples a Timebase tick of 1 millisecond is used.

 The variable “OS_Timer_IE_bit” has to be defined equal to the interrupt enable bit of the “Timebase”

timer.

 The “tasks” have to be defined. They are ordinary mP procedures, with no parameters, except for the

following:

o Each task must contain an endless loop (while true do begin... end)

o In that loop the actual work of the task is done (the code before the loop is only executed the

very first time the task is run)

o In the loop there must be at least 1 call to RTOS that leads to yielding to the Scheduler.

o The tasks are called indirectly by the Scheduler, so each task should be subject to a “SetFuncCall”

statement.

 The CRTOS has to be initialised.

 The tasks have to be “created” (added to the CRTOS task list)

 The Semaphores (if any) have to be “created” (added to a CRTOS semaphore list)

 The tasks have to be started (only the ones that are needed to be started when the Scheduler starts to

run of course)

 The timer (of which the interrupt routine calls “OS_TimerInterrupt”) has to be configured and started.

This is the only MPU and clock speed dependent part in the usage of CRTOS.

 The Scheduler has to be started. At this points tasks will be actually executed.

9

6.2 Example

6.2.1 The CRTOS configuration for the project

Two project files need to be made and entered in the Project Manager: “CRTOS_Defines.pld” and

“CRTOS_Sizes.inc”, see section 10 for the details.

6.2.2 Task variables and semaphore variables

var T_LedOut, T_OscOut, T_Delayed: TOS_Task; // tasks
 E_LedCtrl: TOS_BinarySemaphore; // semaphores

6.2.3 The interrupt routine

procedure Timer1Interrupt(); iv IVT_TIMER_1; ilevel 7; ics ICS_SRS;

begin

 T1IF_bit := 0;

 OS_TimerInterrupt; // to be called every x millisecs

end;

6.2.4 The OS_Timer_IE_Bit

var OS_Timer_IE_bit: sbit at T1IE_bit; // e.g. if timer 1 is used as “Timebase”

6.2.5 Definition of the tasks.

procedure LedOut;

begin

 while true do // endless loop

 begin

 LedOut_bit := not LedOut_bit; // payload of the task

 OS_Yield; // unconditional yield to the CRTOS scheduler

 end;

end;

procedure OSCOut;

begin

 while true do // endless loop

 begin

 OscOut_bit := not OscOut_bit; // payload of the task

 OS_Yield; // unconditional yield to the CRTOS scheduler

 end;

end;

procedure DelayedTask;

begin

 while true do // endless loop

 begin

 DelayedOut_bit := not DelayedOut_bit; // payload of the task

 OS_StartTask(T_OscOut); // start another task

 OS_Delay(20); // yield, delay performed by the CRTOS scheduler

10

 DelayedOut_bit := not DelayedOut_bit; // payload of the task

 OS_StopTask(T_OscOut); // stop another task

 OS_Delay(100); // yield, delay performed by the CRTOS scheduler

 OS_SignalSemaphore(E_LedCtrl); // signal a semaphore

 end;

end;

procedure BinSemTask;

begin

 while true do

 begin

 OS_WaitSemaphore(E_LedCtrl, OS_NO_TIMEOUT);

 OS_StartTask(T_LedOut); // starting of another task

 OS_Delay(50);

 OS_StopTask(T_LedOut); // stopping of another task

 end;

end;

6.2.6 Initialisation of CRTOS

OS_Init;

6.2.7 Signal indirect calling of tasks by the CRTOS scheduler to the compiler

SetFuncCall(LedOut);

SetFuncCall(OSCOut);

SetFuncCall(DelayedTask);

SetFuncCall(BinSemTask);

6.2.8 Creation of tasks

T_LedOut := OS_CreateTask(@LedOut, 3);

T_OscOut := OS_CreateTask(@OscOut, 3);

T_Delayed := OS_CreateTask(@DelayedTask, 2);

T_BinSem := OS_CreateTask(@BinSemTask, 3);

The 2nd parameter of the function “OS_CreateTask” is the task priority, see section 7.7.

6.2.9 Creation of semaphores

E_LedCtrl := OS_CreateBinarySemaphore(False);

See section 8 for explanation of this routine.

6.2.10 Starting of tasks

OS_StartTask(T_Delayed);

OS_StartTask(T_BinSem);

11

6.2.11 Timebase Configuration and starting of the timer

//Timer1 (for mini32 board running at 80 Mhz CPU clock)

//Prescaler 1:8; PR1 Preload = 10000; Actual Interrupt Time = 1 ms

procedure InitTimer1();

begin

 T1CON := 0x8010;

 T1IE_bit := 0; // disable timebase interrupt, will be enabled in “OS_Run”

 T1IF_bit := 0;

 T1IP0_bit := 1;

 T1IP1_bit := 1;

 T1IP2_bit := 1;

 PR1 := 10000;

 TMR1 := 0

end;

6.2.12 Start the CRTOS scheduler

OS_Run; // not in a loop!

 // OS_Run is a blocking task (not left)

6.3 Explanation of example code

See the example code above (section 6.2).

2 tasks are running continuously: “T_Delayed” and “T_BinSem”.

“T_Delayed” starts task “T_OscOut” and stops it again after 20 millisecs. The total period of that is 120 millisecs.

Furthermore “T_Delayed” signals semaphore “E_LedCtrl” every 120 millisecs.

Additionally “T_Delayed” toggles the “DelayedOut_bit” before starting and stopping “T_OscOut”.

The “T_BinSem” task waits for the semaphore signaled by the “T_Delayed” task. When “E_LedCtrl” is signaled

“T_BinSem” starts the “T_LedOut” tasks and stops it again after 50 millisecs. This means that T_LedOut” will run

for 50 millisecs with a total period of 120 millisecs.

The task “T_OscOut” simply toggles “OscOut_bit” in an endless loop until stopped by CRTOS (i.e. 20 millisecs,

every 120 millisecs).

The Task “T_LedOut” toggles “LedOut_bit” in every endless loop until stopped by CRTOS (i.e. 50 millisecs, every

120 millisecs).

The toggling of Pic ports “DelayedOut_bit”, “LedOut_bit” and “OscOut_bit” acts here as payload of the tasks.

Their status can be observed with an oscilloscope. They are defined e.g. as follows:

var LedOut_bit : sbit at LatA.0;

 OSCOut_bit : sbit at LatA.1;

 DelayedOut_bit : sbit at LatB.0;

Of course those ports have to be set to “output”:

var LedTris_bit : sbit at TrisA.0;

 OSCTris_bit : sbit at TrisA.1;

12

 DelayedTris_bit: sbit at TrisB.0;

...

// define ports as output

 LedTris_bit := 0;

 OSCTris_bit := 0;

 DelayedTris_bit:= 0;

On an oscilloscope the behavior can be observed:

Figure 1: DelayedOut_bit (blue) and OscOut_bit (red)

Figure 2: DelayedOut_bit (blue) and LedOut_bit (red)

As one can see the tasks “T_OscOut” and “T_LedOut” are started and stopped by other tasks and run

simultaneously for a while.

13

7 Tasks

Tasks are the most important items in the application using CRTOS; they contain the actual code to the executed

(the payload). This requires the application author to analyze the application requirement and break the

application into a set of inter-related co-operating tasks.

When using CRTOS the tasks have to obey the following rules:

 they are Procedures (not Functions) with no parameters

 they must contain an infinite loop (e.g. “while true do begin ... end;”)

 they must contain, in that loop, at least one statement that can cause a yield to the CRTOS Scheduler

 if the task is not the lowest priority and runs continuously, ensure that it actually yields once in a while to

the Scheduler without becoming eligible immediately again (prevent starvation of tasks with a lower

priority).

 Tasks can have local variables of which the values are to be preserved between task invocations.

Remark: The task can have code before the infinite loop. This code will be executed only once: the first time the

task runs.

Tasks can be created, started, stopped and their priorities changed. They have a State (see section 7.6) and a

Priority (see section 7.7).

The current task (the one executing) can be fetched with the function
CurTask := OS_CurrentTask;

Important:

 Tasks can call other subroutines without any problem, but those routines should:

o NOT have endless loops

o NOT yield to the scheduler (so, do not use the CRTOS calls mentioned in section 7.9)

 Tasks can NOT be called directly from e.g. an other task, they can only be handled by the scheduler.

 Procedures or functions called from within tasks can have parameters and local variables.

7.1 Creation of a task

T_SomeTask := OS_CreateTask(@SomeTask, 3);

Here “T_SomeTask” is of type TOS_Task, “@SomeTask” is the address of the task procedure, and 3 is the (initial)

priority of the task.

Before the CRTOS Scheduler is started a number of tasks can be started, but tasks can also be started while the

CRTOS Scheduler is running (provided there is some other task or event to start stopped tasks). Tasks will not

actually run until CRTOS is started.

7.2 Starting a task

OS_StartTask(T_SomeTask); // T_SomeTask is candidate to be eligible (candidate to be executed)

14

7.3 Starting a task with an initial delay

Sometimes a task is to be run “after a certain time”. This is achieved with:

OS_StartTask_Delay(T_SomeTask, 100); // T_SomeTask is candidate to be eligible (candidate to

be executed)after 100 timebase time ticks

7.4 Stopping a task

OS_StopTask(T_SomeTask); // T_SomeTask will never be eligible for execution

When the task will be resumed (with OS_StartTask or OS_StartTask_Delay) then it will do so with the statement

after OS_StopTask.

OS_StopTask can only be called from within an actual task procedure.

7.5 Stopping the current task and starting another one

OS_ReplaceTask(T_SomeOtherTask); // the current task is stopped and task T_SomeOtherTask is

 // started

OS_ReplaceTask can only be called from within an actual task procedure.

7.6 Task States

Tasks can be in different states:

 Destroyed: the task is not created yet

 Stopped: the task has been created but not started yet (or has been stopped)

 Delayed: the task has been started but is suspended for a period (waiting for n ticks due to OS_Delay)

 Waiting: the task has been started and is waiting a semaphore signaling (forever or with time-out)

 Running: the task is currently active (executing)

The state of a task can be fetched with:
 OS_TaskState(SomeTask);

7.7 Task Priorities

Priorities of tasks range from 0 (zero) to n (n = OS_PRIORITY_COUNT – 1, see section 10). Zero is the highest

priority, 1 is the second highest etc. and n is the lowest one.

Each task has a certain priority assigned (unless CRTOS is configured otherwise).

Tasks with a higher priority always have precedence over tasks with a lower priority. Tasks with the same priority

are executed in a “Round Robin” manner: each task is executed in the same sequence as it was created (the

15

CRTOS Scheduler remembers which task for a certain priority was executed last and takes the next in the same

priority). After startup of the RTOS Scheduler the first task for each priority to be executed is the first one created

with that priority.

The consequence of this is that as long as a task of a certain priority is “eligible” (candidate for execution) tasks

with a lower priority are not run. This can lead to “starvation’ of the lower priority tasks. This means that tasks

with a higher priority should (at least once in a while) yield to the CRTOS Scheduler (e.g. with OS_Delay, or with

OS_WaitSemaphore) without being immediately eligible again.

The priority of a task is defined at its creation time, but can be changed while the CRTOS scheduler runs:

T_Task1 := OS_CreateTask(@Task1, 3);

OS_SetPriority(T_Task1, 2);

The first statements creates a task with priority 3, the second one changes its priority to 2.

The priority of a task can be fetched with:
 OS_Priority(SomeTask);

7.8 Execution Eligibility of a task

A started task is evaluated for eligibility by the CRTOS Scheduler. The scheduler checks the following after a task

yields to the CRTOS scheduler:

 if a delay time has expired (task yielded with OS_Delay)

 if a binary semaphore on which the task is waiting becomes signaled or a counting semaphore value on

which the task is waiting becomes > 0 (task yielded with OS_WaitSemaphore)

 if waiting for a semaphore times out (task yielded with OS_WaitSemaphore)

 if the task yields to the CRTOS Scheduler with OS_Yield

If one of the above happens the task is (again) ready for execution, the task is eligible for execution.

This does not mean the task will be executed immediately, there could be more tasks that are eligible at the same

time. So, all eligible tasks are waiting to be executed (as soon as possible).

The actual CRTOS Scheduler will pick one of them according their priority, and that one will actually be executed.

A task is always eligible for execution after it has just been started with OS_StartTask.

16

7.9 Task Yielding to the scheduler
Each task must yield to the operating system once (or more) inside its endless loop.

This can be done in a number of ways:

7.9.1 Unconditionally

OS_Yield;

This type of yielding causes the scheduler suspends the task’s execution and makes the task immediately eligible

again for execution. Tasks with lower priority than this one have no chance to execution any more.

OS_Yield can only be called from within an actual task procedure.

7.9.2 Delayed

OS_Delay(Ticks);

This causes the scheduler to suspend the task’s execution for “Ticks” timebase ticks. After the ticks have expired,

the task is made eligible again for execution. Here tasks with a lower priority have a chance for execution, since

the scheduler waits a while before the task is made eligible again.

Also the function OS_StartTask_Delay yields to the scheduler during its initial delay.

OS_Delay can only be called from within an actual task procedure.

7.9.3 Waiting (for a semaphore)

OS_WaitSemaphore(SomeSem, 15);

Above method causes the scheduler to suspend the task’s execution until the semaphore becomes signaled or 15

timebase ticks have passed (timeout). After one of both occurred the task is made eligible again for execution.

Here tasks of a lower priority have a chance for execution (see the “Delayed” version above for the reason),

provided the semaphore is not actually signaled when OS_WaitSemaphore is called, in which case the scheduler

will make the task not eligible for a while.

OS_WaitSemaphore can only be called from within an actual task procedure.

7.9.4 Stopping the current task

If the current task is stopped then a yield to the scheduler will occur. This can be invoked by calling either one of

these commands:

OS_StopTask(OS_CurrentTask); // or
OS_ReplaceTask(NewTask);

OS_StopTask and OS_ReplaceTask can only be called from within an actual task procedure.

17

7.10 Tasks are called indirectly

Important:

Tasks are always called indirectly, so mikroPascal has to be warned by inserting the statement “SetFuncCall”, e.g.:

SetFuncCall (Task1, Task2, Task3, ...);

The SetFunCall statements have to be placed before creation of the tasks in the main procedure.

8 Semaphores

Semaphores are used to communicate between tasks, e.g. the finishing of a process, the availability of data, a

time that has expired etc. Also shared resources (e.g. an SDcard) can be waited for and “grabbed” and “freed”

after usage.

There are 2 types of semaphores: binary and counting:

 A binary semaphore can only be in the state “signaled” or “not signaled”,

 a counting semaphore can be signaled more than once (it counts the number of times it was signaled).

8.1 Creation of a Semaphore

A binary semaphore is created as follows:

var E_BinSem: TOS_BinarySemaphore;

...

E_BinSem := OS_CreateBinarySemaphore(False); // initial state = “not signaled”

A counting semaphore is created with:
var E_SomeSem : TOS_CountingSemaphore;

...

E_SomeSem := OS_CreateCountingSemaphore(5); // initial count = 5 (normally zero!)

8.2 Signaling of a semaphore

Both types of semaphores are signaled by a task with

OS_SignalSemaphore(E_SomeSem);

In the case of a binary semaphore it will change state to “signaled”, in case of a counting semaphore it will

increment its count.

It is also possible to signal a semaphore from an ISR (Interrupt service routine) with

OS_SignalSemaphore_ISR(E_SomeSem);

18

8.3 Waiting for a Semaphore

Both types of semaphores can be waited for in (other) tasks with:

OS_WaitSemaphore(E_SomeSem, 20); // with a timeout of 20 timebase ticks

In case of a binary semaphore the statement will operate as follows:

 if the semaphore is already signaled at the time “OS_WaitSemaphore” is executed then the semaphore is

cleared and the task is continued (no yield to the CRTOS Scheduler)

 if the semaphore is not signaled at the time “OS_WaitSemaphore” is executed, it will yield to the CRTOS

Scheduler until the semaphore becomes signaled. When that happens, the semaphore will be cleared and

the task that called “OS_WaitSemaphore” will be made “eligible” again (candidate for execution).

The behavior of a counting semaphore is very similar:

 If the value (count) of the semaphore is already >0 (“signaled”) at the time “OS_WaitSemaphore” is

executed, then the semaphore count is decremented and the task is continued (no yield to the CRTOS

Scheduler)

 If the semaphore count is zero (not signaled) at the time “OS_WaitSemaphore” is executed, it will yield to

the CRTOS Scheduler until the semaphore count becomes > 0. When that happens, the semaphore count

will be decremented and the task that called “OS_WaitSemaphore” will be made “eligible” again

(candidate for execution).

As one can see “signaling” a semaphore sets some kind of flag, while “wait for” suspends the execution of a task

until that flag is set, and if so, clears it and continues execution. In case of counting semaphores the “flag” can be

set multiple times.

OS_WaitSemaphore can only be called from within an actual task procedure.

8.4 Semaphore timeout

Waiting for a semaphore can be subject to a time limit. The procedure OS_WaitSemaphore stops execution of a

task until the binary semaphore is signaled (or the counting semaphore value is > 0), or the timeout has expired.

The occurrence of a timeout when the task continues executing can be tested with the boolean function

OS_TimeOut.

Example:

...

OS_WaitSemaphore(E_SomeSem, 50);

if OS_TimeOut

then ... // the semaphore was not signaled in time

else ... // the semaphore was signaled in time

In above example the timeout is 50 ticks of the CRTOS Timebase.

19

 If the semaphore E_SomeSem does not become signaled within those 50 ticks the CRTOS Scheduler will

make the calling task eligible for execution again and, when it actually runs again, the function

OS_TimeOut will return “true”. The timeout flag will be reset automatically when calling OS_TimeOut.

 If the semaphore E_SomeSem becomes signaled within to Timebase ticks the CRTOS Scheduler will make

the calling task eligible for execution again and, when it actually runs again, the function OS_TimeOut will

return “false”.

8.5 Clearing a semaphore

A semaphore can be cleared also without using “OS_WaitSemaphore”.

Example:

If OS_TrySemaphore(SomeSem) then // test if the semaphore is signaled

begin // if so, then...

 // do something

 OS_ClearSemaphore(SomeSem); //and clear the semaphore

end;

9 The “Always” procedure

The possibility exists to let the scheduler call a procedure each time it is about to select another task for

execution. Since it is called very often (on each “yield” of a task to the scheduler) it can be used to perform some

very time critical actions in your program. The “Always” procedure:

 Is a “procedure”, not a “task”.

o This means it has NO endless loop and

o it does NOT yield to the scheduler, so, all CRTOS routines mentioned in section 7.9 are forbidden.

 Can use other CRTOS commands like starting of stopping a task.

 Must have a very low time consumption, since it is called continuously by the scheduler (it will delay task

execution).

 Can call other routines (no tasks however).

 Only available when the OS_ALWAYS compiler directive is used.

 Is called indirectly (so, “SetFuncCall” is needed)

The always procedure is “attached” to CRTOS trough a procedure pointer called “OS_AlwaysProcedure”.

Example:

procedure MyAlwaysProcedure;

begin

 LatA.0 := not LatA.0; // payload

end;

...

SetFuncCall(MyAlwaysProcedure); // will be called indirectly

OS_AlwaysProcedure := @MyAlwaysProcedure; // attach the procedure to the “always” hook.

20

...

OS_AlwaysProcedure := nil; // unhook the procedure

10 CRTOS Configuration

CRTOS uses a number of compiler directives which define the CRTOS functionalities and constants which define

the list sizes:

10.1 CRTOS Functionalities

In CRTOS executing tasks is always a supported functionality, without tasks there is no RTOS whatsoever. For

other features there are the following compiler directives, to be found in the file “CRTOS_Defines.pld” (to be

present in the main project file’s directory):

CRTOS_Defines.pld meaning

OS_SEMAPHORES allows semaphores

OS_PRIORITIES if there is more than one priority

OS_DELAY needed for “OS_Delay”

OS_TIMEOUT needed for “OS_WaitSemaphore” with timeout

OS_SIGNAL_ISR To enable “OS_SignalSemaphore_ISR”

OS_ALWAYS enable the "always" procedure, see section 9

The above defines can be “undefined” by either deleting the definition or adding a minus sign (“-“) just before it.

Example of a valid content of the file “CRTOS_Defines.pld” (only one priority, no semaphore signaling from ISR’s,

no “Always procedure”):

OS_SEMAPHORES

-OS_PRIORITIES

OS_DELAY

OS_TIMEOUT

-OS_SIGNAL_ISR

-OS_ALWAYS

Important:

 Since the CRTOS_Defines.pld file contents must be known by all files used in the project it is obligatory to

set the “Always build all files in the project” compiler option (IDE menu: Tools, Options, Output settings).

 The CRTOS_Defines.pld file must be entered in the Project Manager, section “Project Level Defines”.

Some OS_... functions have another signature when certain defines are not there:

 When OS_PRIORITIES is undefined:

The signature of OS_CreateTask becomes:
SomeTask := OS_CreateTask(@TaskProcedure); // no priority parameter present

The OS_Priority and OS_SetPriority functions will not exist.

21

 When OS_DELAY is undefined:

The OS_Delay and the OS_StartTask_Delay functions will not exist.

 When OS_TIMEOUT is undefined:

The signature of OS_WaitSemaphore becomes:
OS_WaitSemaphore(SomeSem); // no timeout parameter

The OS_TimeOut function will not exist.

 When both OS_DELAY and OS_TIMEOUT are undefined:

The OS_TimerInterrupt function will not exist. This also means that a timer interrupt routine which calls

OS_TimerInterrupt is not needed.

Additionally the definition of the OS_Timer_IE_bit is no longer needed.

 When OS_Signal_ISR is undefined:

The OS_SignalSemaphore_ISR function will not exist.

The variable OS_AlwaysProcedure (the hook for the Always procedure, see section 9) only exists when

OS_ALWAYS is defined.

10.2 CRTOS sizes

10.2.1 Sizes of the CRTOS Lists

The size of some lists is defined by setting the following constants to be found in the file “CRTOS_Sizes.inc”:

const OS_TASKS_COUNT = 10; // maximum number of tasks

const OS_PRIORITY_COUNT = 3; // maximum number of priorities

const OS_EVENTS_COUNT = 5; // maximum number of semaphores

Above description is self explanatory. The values are “maxima”, meaning you can actually use (create) less in your

application.

The constant OS_PRIORITY_COUNT is only needed when the compiler directive OS_PRIORITIES has been

defined.

The constant OS_EVENTS_COUNT is only needed when the compiler directive OS_SEMAPHORES has been

defined.

10.2.2 The task stack size

Also this value is defined in the file “CRTOS_Sizes.inc”:

const OS_Task_StackSize = 400; // size of the tasks stacks (one for each created task)

This value defined how many bytes are to be reserved for the stack of each task. The value has to be a multiple of

4.

Important:

 The minimum value for all three constants is 1 (unless not needed of course). The maximum value of

OS_TASKS_COUNT and OS_EVENTS_COUNT is 254, the maximum value of OS_PRIORITY_COUNT is 255.

22

 Memory for lists is always reserved according the values of the 3 OS_..._COUNT constants, irrespective of

how many tasks or events are actually created, or how many priorities are actually used.

 The stack size must be so that it takes into account

o the local variable size of the task

o 4 bytes for every deeper call of subroutines done by the task (this value is at least 4)

o the local variable size of every deeper call of subroutines done by the task

 The file CRTOS_Sizes.inc must be entered in the Project Manager, section “Other Files”.

11 Appendixes

11.1 Programmers Reference

In this section all CRTOS interface items (except configuration, see section 10) are discussed.

11.1.1 Types

TOS_Task

Represents a handle to a task.

Example:
Var SomeTask : TOS_Task;

SomeTask := OS_CreateTask(@Task1, 3);

TOS_BinarySemaphore

Represents a handle to a binary semaphore.
This type only exists if the OS_SEMAPHORES configuration directive is defined, see section 10.1.

Example:
Var SomeBinSem: TOS_BinarySemaphore;

SomeBinSem := OS_CreateBinarySemaphore(false);

TOS_CountingSemaphore

Represents a handle to a counting semaphore.
This type only exists if the OS_SEMAPHORES configuration directive is defined, see section 10.1.

Example:
Var SomeCountSem : TOS_CountingSemaphore;

SomeCountSem := OS_CreateCountingSemaphore(0);

TOS_Semaphore

Represents a handle to both binary and counting semaphores.
This type only exists if the OS_SEMAPHORES configuration directive is defined, see section 10.1.

Example:
OS_SignalSemaphore(SomeCountSem);

TOS_Priority

A value to be used as task priority. Value 0 (zero) is the highest priority, 1... the lower ones.
This type only exists if the OS_PRIORITIES configuration directive is defined, see section 10.1.

Example:
SomeTask := OS_CreateTask(@Task1, 3); // priority 3

TOS_State

A value type representing the state a task is in. See the Constants in section 11.1.3 for the possible values.

23

Example:
Var State: TOS_State;

State := OS_State(SomeTask);

11.1.2 Variables

var OS_Timer_IE_bit : sbit; sfr; external;

This variable must be defined somewhere in the program using CRTOS. It enables CRTOS to control the calling of
its Timebase routine (OS_TimerInterrupt).
This variable only has to be defined if the OS_DELAY or OS_TIMEOUT configuration directive is defined, see
section 10.1.

Example:
var OS_Timer_IE_bit: sbit at T1IE_bit; // here timer 1 is used for the timebase

var OS_AlwaysProcedure : ^TOS_AlwaysProcedure;

This is the “hook” to the Always procedure, see section 9. To activate an Always procedure set the variable to the
address of that procedure, to deactivate an always procedure, set the variable to nil.

Example:
OS_AlwaysProcedure := @MyAlwaysProcedure; // activate always procedure

OS_AlwaysProcedure := nil; // deactivate always procedure

11.1.3 Constants

OS_TASKS_COUNT

Maximum number of tasks. Should always be 1..255. To be placed in project file “CRTOS_Sizes.inc”, see section
10.2.

Example:
OS_TASKS_COUNT = 10; // maximum 10 tasks are to be created.

OS_PRIORITY_COUNT

Maximum number of priorities. Should always be 1..255 (if used). To be placed in project file
“CRTOS_Sizes.inc”, see section 10.2.
Only exists if the OS_PRIORITIES configuration directive is defined, see section 10.1.

Example:
OS_PRIORITY_COUNT= 5; // priorities are numbered from 0..4

OS_EVENTS_COUNT

Maximum number of semaphores (both binary and counting together). Should always be 1..255 (if used). To be
placed in project file “CRTOS_Sizes.inc”, see section 10.2.
Only exists if the OS_SEMAPHORES configuration directive is defined, see section 10.1.

Example:
OS_EVENTS_COUNT = 3; // max 3 events are to be created

OS_TASK_STACKSIZE

The stack size, in bytes, to be made available for each task.
To be placed in project file “CRTOS_Sizes.inc”, see section 10.2.

Example:
const OS_Task_StackSize = 400; // size of the tasks stacks (one for each created task)

OS_NO_TASK

Value returned by OS_CreateTasks if the OS_TASKS_COUNT has been reached previously.

Example:
Var Task: TOS_Task;

24

Task := OS_CreateTask(@routine, 3);

If Task <> OS_NO_TASK then // task creation successful

...

OS_NO_EVENT

Value returned by OS_Create_xxx_Semaphore if the OS_EVENTS_COUNT has been reached previously.
Only exists if the OS_SEMAPHORES configuration directive is defined, see section 10.1.

Example:
Var Sem: TOS_Semaphore;

Sem := OS_CreateBinarySemaphore(false);

If Sem <> OS_NO_EVENT then // event creation was successful

...

OS_NO_TIMEOUT

Value to be used in OS_WaitSemaphore if no timeout is wanted (= infinite timeout).
Only exists if the OS_TIMEOUT configuration directive is defined, see section 10.1.

Example:
OS_WaitSemaphore(SomeCountSem, OS_NO_TIMEOUT);

st_DESTROYED

TOS_State type value: the task is not created.

st_STOPPED

TOS_State type value: the task is created, but not started (yet) or has been stopped.

st_DELAYED

TOS_State type value: the task has been started but is suspended for a period (waiting for n ticks).

st_WAITING

TOS_State type value: the task has been started and is waiting a semaphore (forever or with time-out).

st_ELIGIBLE

TOS_State type value: the task has been started and is eligible to run (the wait time is over or semaphore is
signaled/timeout or yielding to the Scheduler was with OS_Yield).

st_RUNNING

TOS_State type value: The task is the currently active (executing) Task.

11.1.4 Procedures and functions

procedure OS_Init;

To be called before any other CRTOS routine can be called.

Example:
OS_Init;

procedure OS_Run;

Starts the CRTOS Scheduler.
Should be the last routine executed in the main program, the task is blocking (never left).

Example:
OS_Run;

function OS_CreateTask(TaskProc: ^TOS_TaskProc; Priority: TOS_Priority): TOS_Task;
function OS_CreateTask(TaskProc: ^TOS_TaskProc): TOS_Task;

25

Adds a task to the tasks list. The "TaskProc" parameter is the start address of the task.
The “Priority” parameter gives the initial priority to the task (only available when configuration directive
OS_PRIORITIES is defined, see section 10.1).
The function returns the number of the task in the tasks list or "OS_NO_TASK" when the tasks list is full.

Example:
Var Task: TOS_Task;

Procedure MyTaskProcedure;

Begin

 ...

End;

Task := OS_CreateTask(@MyTaskProcedure, 2); // create task with priority 2

procedure OS_StartTask(TaskID: TOS_Task);

Starts a (stopped) task identified by "TaskID".

Example:
OS_StartTask(Task);

procedure OS_StartTask_Delay(TaskID: TOS_Task; Ticks: word);

Starts a (stopped) task identified by "TaskID" after an initial waiting time of "Ticks" timebase ticks.
“Ticks” should have a value of 1..65535.
Only available if the OS_DELAY directive is defined, see section 10.1.

Example:
OS_StartTask_Delay(Task, 30);

procedure OS_StopTask(TaskID: TOS_Task);

Stops the task "TaskID" and returns to the Scheduler if "TaskID" is the current task.
The task can only be restarted with "OS_StartTask" which will make the task resume where it was when stopped.
OS_StopTask can only be called from within an actual task procedure.

Example:
OS_StopTask(Task; // stop any task or
OS_StopTask(OS_CurrentTask);// stop the current task

procedure OS_ReplaceTask(TaskID: TOS_Task);

Stops the current executing task and starts the task with "TaskID".
OS_ReplaceTask can only be called from within an actual task procedure.

Example:
OS_ReplaceTask(Task2);

function OS_CurrentTask: TOS_Task;

Returns the ID of the currently active (executing) task.

Example:
OS_SetPriority(OS_CurrentTask, 5);

function OS_TaskRunning(TaskID: TOS_Task): boolean;

Returns true if the task "TaskID" is started, otherwise false.

Example:
If OS_TaskRunning(Task) then ...

function OS_TaskState(TaskID: TOS_Task): TOS_State;

Returns the state of "TaskID".

Example:
Var State: TOS_State;

State := OS_TaskState(Taskx);

26

procedure OS_Yield;

Unconditionally yields to the Scheduler. If no other task is waiting to run then the current task will resume at the
next instruction after "OS_Yield".
OS_Yield can only be called from within an actual task procedure.

Example:
OS_Yield;

procedure OS_Delay(Ticks: word);

Suspends the current task and returns to the Scheduler. The latter will resume the task after "Ticks" time.
“Time” should have a value of 1..65535.
OS_Delay can only be called from within an actual task procedure.
This procedure only exists if the OS_DELAY configuration directive is defined, see section 10.1.

Example:
OS_Delay(100); // 100 timebase ticks delay

function OS_CreateBinarySemaphore(InitialValue: boolean): TOS_BinarySemaphore;

Adds a binary semaphore to the events list.
The function returns the semaphore's number or "OS_NO_EVENT" if the events list is full "InitialValue" is the
initial value assigned to the semaphore (true = "signaled").
This procedure is only defined if the OS_SEMAPHORES configuration directive is defined, see section 10.1.

Example:
Var BinSem: TOS_BinarySemaphore;

OS_CreateBinarySemaphore(BinSem, false);

function OS_CreateCountingSemaphore(InitialValue: word): TOS_CountingSemaphore;

Adds a counting semaphore to the events list.
The function returns the semaphore's number or "OS_NO_EVENT" if the events list is full "InitialValue" is the
initial count value assigned to the semaphore.
This procedure is only defined if the OS_SEMAPHORES configuration directive is defined, see section 10.1.

Example:
Var CntSem: TOS_CountingSemaphore;

CntSem := OS_CreateCountingSemaphore(CntSem, 0)

procedure OS_SignalSemaphore(Event_: TOS_Semaphore);

Sets the semaphore to "signaled" (binary semaphore) or increments the semaphore count by one (counting
semaphore).
This procedure is only defined if the OS_SEMAPHORES configuration directive is defined, see section 10.1.

Example:
OS_SignalSemaphore(BinSem); // or
OS_SignalSemaphore(CntSem);

procedure OS_SignalSemaphore_ISR(Event_: TOS_Semaphore);

To be used from within interrupt service routines.
Sets the semaphore to "signaled" (binary semaphore) or increments the semaphore count by one (counting
semaphore).
This procedure is only defined if the OS_SEMAPHORES and OS_SIGNAL_ISR configuration directives both are
defined, see section 10.1.

Example:
OS_SignalSemaphore_ISR(BinSem); // or
OS_SignalSemaphore_ISR(CntSem);

procedure OS_WaitSemaphore(Event_: TOS_Semaphore; TimeOut: word);
procedure OS_WaitSemaphore(Event_: TOS_Semaphore);

Suspends the current task until the binary or counting semaphore referenced in "Event_" has been signaled
(binary semaphore) or the semaphore count has a value > 0 (counting semaphore) or the TimeOut (ticks) has

27

been elapsed.
If the event is already signaled (binary) or the semaphore count has a value > 0 (counting) when the wait routine
is called then the current task will continue (no task switching).
“TimeOut” should have a value of 1..65535.
This procedure is only defined if the OS_SEMAPHORES configuration directive is defined, see section 10.1.
The TimeOut parameter is only there if the OS_TIMEOUT configuration directive is defined, see section 10.1.
OS_WaitSemaphore can only be called from within an actual task procedure.

Example:
OS_WaitSemaphore(BinSem, 50); // timeout of 50 timebase ticks

function OS_ReadSemaphore(Event_: TOS_Semaphore): boolean;

Returns true if the binary semaphore signaled or the counting semaphore's value is > 0, otherwise false. The
value of the semaphore is not changed (signaling or count value).

Example:
If OS_ReadSemaphore(BinSem) then ... //or
If OS_ReadSemaphore(CntSem) then ...

function OS_ReadCountingSemaphore(Event_: TOS_Semaphore): word;

Returns the counting semaphore's value. That value remains unchanged.

Example:
Var CntSemValue: word;

CntSemValue := OS_ReadCountingSemaphore(CntSem);

function OS_TrySemaphore(Event_: TOS_Semaphore): boolean;

Returns true if the binary semaphore is signaled or the counting semaphore's value is > 0, otherwise false.
The value of the semaphore remains unchanged.

Example:
If OS_TrySemaphore(BinSem) then ... // or
If OS_TrySemaphore(CntSem) then ...

function OS_TimeOut: boolean;

Returns "true" if a timeout occurred, or false if no timeout occurred (e.g. after "OS_WaitSemaphore").
After calling "OS_TimeOut" the timeout flag is cleared. The flag is also initially cleared when an "OS_Wait..."
routine is called.
This procedure is only defined if the OS_TIMEOUT configuration directive is defined, see section 10.1.

Example:
OS_WaitSemaphore(CntSem, 100);

If OS_TimeOut

then ...

else ...

procedure OS_ClearSemaphore(Event_: TOS_Semaphore);

Sets a binary semaphore to "not signaled" or sets a counting semaphore’s count to zero.
Also pending signaling from interrupts are cleared.

Example:
If OS_TrySemaphore(SomeSem) then

Begin

 // do something

 OS_ClearSemaphore(SomeSem); //and clear the semaphore

End;

procedure OS_SetPriority(TaskID: TOS_Task; Priority: TOS_Priority);

Sets the priority of "TaskID" to "Priority".
This procedure is only defined if the OS_PRIORITIES configuration directive is defined, see section 10.1.

Example:
OS_SetPriority(SomeTask, 5);

28

function OS_Priority(TaskID: TOS_Task): TOS_Priority;

Returns the priority of "TaskID".
This procedure is only defined if the OS_PRIORITIES configuration directive is defined, see section 10.1.

Example:
Var Priority : TOS_Priority;

Priority := OS_Priority(SomeTask);

procedure OS_TimerInterrupt;

To be called e.g. every 1 millisecs, preferably from within a timer ISR. Provides the “Timebase” for CRTOS.
This procedure is only defined if the OS_DELAY or the OS_TIMEOUT configuration directive is defined, see section
10.1.

Example:
procedure Timer1Interrupt; iv IVT_ADDR_T1INTERRUPT;

begin

 T1IF_bit := 0;

 OS_TimerInterrupt; // to be called every 1 millisecs

end;

11.1.5 Directives

These are placed in the project file “CRTOS_Defines.pld”, see section 10.1.

OS_SEMAPHORES

Allows semaphores

OS_PRIORITIES

if there is more than one priority

OS_DELAY

needed for OS_Delay

OS_TIMEOUT

needed for OS_WaitSemaphore with timeout

OS_SIGNAL_ISR

To enable OS_SignalSemaphore_ISR

OS_ALWAYS

enables the "Always" procedure

11.2 Nomenclature

Expression Meaning

CRTOS Scheduler The main task of the scheduler is selecting a task for execution after another task
yields to it. It does this by:

 saving the context of the yielding task

 calling the “Always” procedure (optionally)

 making a list of tasks eligible to be executed

 Choosing one of them according the priority rules

 restoring the context of the task chosen, and

 finally executing the newly chosen task

CRTOS Timebase CRTOS has to keep track of time when OS_Delay or OS_WaitSemaphore timeouts

Always#_The_

29

are used.
This is achieved by calling the routine “OS_TimerInterrupt” on a regular basis (e.g.
1 millisecond) by the user program (preferably in an interrupt service routine). The
routine counts down the delay and timeout timers.
All values used in OS_Delay and OS_WaitSemaphore are “timebase ticks”.

CRTOS Always Procedure A procedure called in every loop of the Scheduler, see section 9

30

11.3 Task (context) switching mechanism

Graphically (switching alternating between 2 tasks is shown):

Task switching is done as follows:

 The current (executed) task yields (i.e. gives control) to the CRTOS Scheduler,

 The Scheduler saves the context of the task above,

 The scheduler calls the “Always” procedure (if applicable – see section 9),

 The Scheduler selects another task, and

 If a new task is selected the Scheduler first restores the context of that new task and gives control to it (=

continue with the next statement after its yield to the OS)

 The initial return address of a tasks is its start address. This means that code above the endless loop in a

task will be executed only the very first time the task runs.

As can be seen, the scheduler does not “call” the tasks, the tasks “call” the scheduler. The scheduler simply

chooses which task it “returns” to.

The only code actually “called” by the scheduler is the “Always” procedure, see section 9.

11.3.1 Task Context

For PIC32 the context of a task (saved when a task yields control to the OS, restored when the OS gives execution

to a task) consist of the following:

31

 All CPU registers (including stack pointer SP and return address RA) except the program counter and R1.

11.4 Examples

11.4.1 Timers

Timers are tasks that are executed on a regular time interval, e.g. 100 milliseconds.

In CRTOS there are no special “timers”, so, they have to be implemented as regular tasks.

An example:

procedure Timer1Task;

begin

 while true do

 begin

 // do here the actions that are to be executed regularly (payload)

 OS_Delay(100); // cyclic delay

 end;

end;

...

Task1 := OS_CreateTask(@Timer1Task, 0);

...

OS_StartTask_Delay(Task1, 50); // initial delay

As you can see in above example there is also an “initial” delay of 50 timebase ticks. The other one makes sure

the payload “do here the actions...” will be executed every 100 timebase ticks.

Of course, in stead of the constant values 50 and 100, also variables (byte or word) can be used.

There are also “one shot” timers: their payload is executed only once after a waiting time.

In code:

procedure OneShot; // One-shot with extra initial delay

begin

 while true do

 begin

 OS_Delay(100);

 // do something useful here (payload)

 OS_StopTask(OS_CurrentTask); // and stop this task

 end;

end;

or

procedure OneShot;

begin

 while true do

 begin

 // do something useful here (payload)

 OS_StopTask(OS_CurrentTask); // and stop this task

 end;

end;

...

Task1 := OS_CreateTask(@OneShot, 0);

...

OS_StartTask_Delay(Task1, 50); // one shot delay

32

11.4.2 Critical resources

Critical resources are e.g. SD/MMC cards. Two tasks cannot gain access to such a resource at the same time, one

task needs to release the resource before another can gain access to it. This is no big problem in a cooperative

RTOS provided the actions on the critical resources are always properly completed before yielding.

Nevertheless, there is a possibility, using semaphores to provide protection for critical resources.

This is done by giving the binary semaphore used for the protection an initial value of “true” (signaled), meaning

“the critical resource is available”.

The task that wants to access the resource first waits for the semaphore to be signaled (resource is available),

which will make the semaphore non signaled (meaning the resource is now not available any more). After the task

has done its activities with the critical resource if will make it “available” again (or “free” it) by signaling the

semaphore. In code:

procedure MyTask;

begin

 while true do

 begin

 ...

 // here the tasks wants to use some critical resource, so

 OS_WaitSemaphore(Res, OS_NO_TIMEOUT);

 ...

 // here the critical resource can be used by this task, and, since the

 // semaphore is now unsignaled, it can not be used by other tasks

 OS_Delay(10); // for the example, to make things difficult (*)

 ...

 // here the task is done with the critical resource, so

 OS_SignalSemaphore(Res); // release the critical resource

 end;

end;

(*): without the “protection” some other task could try to access the critical resource.

The semaphore is initially set to “signaled” while it is created:
var Res: TOS_BinarySemaphore;

Res := OS_CreateBinarySemaphore(true);

[end of document]

	1 Important
	2 Overview of CRTOS types, constants, variables and functions
	3 Introduction
	3.1 Why should I use CRTOS?
	3.2 CRTOS Fundamentals
	3.2.1 Some Basic Definitions
	3.2.2 More about Tasks

	4 CRTOS Features
	5 CRTOS Library files
	6 CRTOS Usage in a program
	6.1 Overview
	6.2 Example
	6.2.1 The CRTOS configuration for the project
	6.2.2 Task variables and semaphore variables
	6.2.3 The interrupt routine
	6.2.4 The OS_Timer_IE_Bit
	6.2.5 Definition of the tasks.
	6.2.6 Initialisation of CRTOS
	6.2.7 Signal indirect calling of tasks by the CRTOS scheduler to the compiler
	6.2.8 Creation of tasks
	6.2.9 Creation of semaphores
	6.2.10 Starting of tasks
	6.2.11 Timebase Configuration and starting of the timer
	6.2.12 Start the CRTOS scheduler

	6.3 Explanation of example code

	7 Tasks
	7.1 Creation of a task
	7.2 Starting a task
	7.3 Starting a task with an initial delay
	7.4 Stopping a task
	7.5 Stopping the current task and starting another one
	7.6 Task States
	7.7 Task Priorities
	7.8 Execution Eligibility of a task
	7.9 Task Yielding to the scheduler
	7.9.1 Unconditionally
	7.9.2 Delayed
	7.9.3 Waiting (for a semaphore)
	7.9.4 Stopping the current task

	7.10 Tasks are called indirectly

	8 Semaphores
	8.1 Creation of a Semaphore
	8.2 Signaling of a semaphore
	8.3 Waiting for a Semaphore
	8.4 Semaphore timeout
	8.5 Clearing a semaphore

	9 The “Always” procedure
	10 CRTOS Configuration
	10.1 CRTOS Functionalities
	10.2 CRTOS sizes
	10.2.1 Sizes of the CRTOS Lists
	10.2.2 The task stack size

	11 Appendixes
	11.1 Programmers Reference
	11.1.1 Types
	11.1.2 Variables
	11.1.3 Constants
	11.1.4 Procedures and functions
	11.1.5 Directives

	11.2 Nomenclature
	11.3 Task (context) switching mechanism
	11.3.1 Task Context

	11.4 Examples
	11.4.1 Timers
	11.4.2 Critical resources

