
1

The StateMachine Library

16-03-2014

Content
1 The StateMachine .. 1

2 Using the Library .. 2

2.1 Events and States Constants .. 2

2.2 The Action procedures ... 3

2.3 The StateMachine_NrTransitions constant .. 3

2.4 The StateMachine_TransitionTable ... 3

2.5 The StateMachine_GetEvent function ... 4

2.6 Running the State machine ... 4

3 The interface part of the “StateMachine” library .. 5

The library ‘StateMachine’ provides a simple mechanism to build a state machine in the program. It does

not support “SuperStates”, ”, “entry”, “exit” or “Do” actions, only transition related actions (it is a “Mealy”

machine). It also has no event queue.

1 The StateMachine
What is a state machine? It implements a “state transition diagram” like the following:

In above state diagram

- S0..S3 represents the different states the system can be in (S0 being the initial state),

- E1..E6 represent the events that cause state transitions

- A1..A6 represent the actions to take place when a state transition occurs. This action is optional.

2

A State Transition diagram is a good way to describe the behaviour of a system, and is easy to implement.

2 Using the Library
For this library the user has to provide a number of items in the program:

 Constants for Events and States, see Events and States Constants.

 All “Action” procedures that are mentioned in the “StateMachine_TransitionTable” below, see The

“Action” procedures.

 A constant named “StateMachine_NrTransitions”, holding the number of state transitions in the

“StateMachine_TransitionTable” below, see The “StateMachine_NrTransitions” constant.

 A constant named “StateMachine_TransitionTable”, representing the State transition diagram to

be implemented, see The “StateMachine_TransitionTable”.

 A function named “StateMachine_GetEvent” of type “byte” which returns the event that occurred

in the system (zero means “no event”), see The “StateMachine_GetEvent”.

 Running the state machine, see Running the State machine.

2.1 Events and States Constants
Example:

// ------------ Event Constants --

const E1 = '1';

 E2 = '2';

 E3 = '3';

 E4 = '4';

 E5 = '5';

 E6 = '6';

// ------------ State Constants --

const S0 = 0; // initial state (always zero)

 S1 = 1;

 S2 = 2;

 S3 = 3;

The constant names can be chosen freely.

In above example the event values are characters (e.g. ‘1’), but they can be chosen freely, as long as they

are mutually exclusive.

The constant values (0..254 for states, 1..255 for events) can be chosen freely except in 3 cases:

 Events can not have the value zero (‘zero’ is ‘no event’),

 The initial state (here S0) has always the value zero.

 A value of 255 means “any state”. This value can only be used as “fromstate” in The

“StateMachine_TransitionTable”. AnyState can be used together with “general” events as .e.g

safety or alarm events, where the transition towards a certain state always has to occur.

StateMachine_TransitionTable#_The_
StateMachine_TransitionTable#_The_

3

2.2 The Action procedures
They have the following signature:

procedure Action1(From, ToWards, Event: byte);

As one can see the Action routines receive all the information they need to be able to do the correct thing:

the current state (From), the future state (ToWards) and the event that causes the state transition (Event).

An example:

procedure A1(From, ToWards, Event: byte);

begin

 Uart1_write_text('From: ');

 Uart_write_UnsInt(From);

 Uart1_write_text(', To: ');

 Uart_write_UnsInt(ToWards);

 Uart1_write_text(', Event: ');

 Uart_write_UnsInt(Event);

 Uart_write_Line(', Action1');

end;

2.3 The StateMachine_NrTransitions constant
Equal to the number of State transitions in the State Transition Table below. The name can NOT be chosen
freely.

Example:

const StateMachine_NrTransitions: byte = 6; // number of transitions in the table below

2.4 The StateMachine_TransitionTable
This is an array with elements of the following format:

fromstate, tostate, event, action

Example (according the above state diagram):

const StateMachine_TransitionTable: array[StateMachine_NrTransitions] of TStateTransition

= // obligatory table

 // format: fromstate, tostate, event, action

 (

 (S0, S1, E1, @A1), // leave initial state (zero)

 (S1, S2, E2, @A2),

 (S2, S3, E3, @A3),

 (S2, S1, E4, @A4),

 (S3, S1, E5, @A5),

 (S3, S0, E6, @A6)

);

The table is scanned in the order stated in the table.

Once a matching entry is found (fromstate and event match) the action is executed and the transition is

made, the rest of the table is not scanned further.

4

The order of the entries in the table is of no importance (normally the entries in the table are mutually

exclusive) except when the “AnyState” value (255) is used as a “fromstate”. The latter should be placed

below more strong transitions (that is: where the fromstate does not equal “anystate” for a certain event).

e.g.:

const StateMachine_TransitionTable: array[StateMachine_NrTransitions] of TStateTransition

= // obligatory table

 // format: fromstate, tostate, event, action

 (

 ...

 (S2, S3, E3, @A3), // first the occurance of E3 will be checked in state S2

 (S2, S1, E4, @A4),

 ...

 (255, Sx, E3, @Ax) // goto Sx from any other state than S2 when E3 occurs

);

If no action is needed during a state transition “nil” should be specified as action. Actions may be used for

different transitions.

The name of the table can NOT be chosen freely.

2.5 The StateMachine_GetEvent function
This function has the following signature:

function StateMachine_GetEvent: byte;

An example:

function StateMachine_GetEvent: byte; // oligatory function

begin

 Result := Event; // Fetch the pending Event (if some) that occured in the system

 Event := 0; // clear the pending Event

end;

As one can see the (pending) event is returned by the function and should subsequently be cleared.

The variable “Event” (name can be freely chosen) has to be given the correct value by the process. A value

of 0 means “no event”, a value of >0 means “something happened” (e.g. a button was pushed or a

temperature rised above a limit). The process can of course use more than one “Event” variable to gather

multiple events. They must all be represented by a different number however.

The name of the function can NOT be chosen freely.

2.6 Running the State machine
This is quite simple.

2 methods exist:

 Call the “StateMachine_Run” routine. No code should appear below this call, it will not be

executed (“StateMachine_Run” calls “StateMachine_Init” and after that calls “StateMachine_Step”

in an endless loop) , OR

5

 Call the “StateMachine_Init” routine once, and after that call “StateMachine_Step” in a loop of

your own. The latter method will allow also to execute code outside the StateMachine.

Examples:

// Method 1

 StateMachine_Run; // start the state machine

 // no code allowed below this line (it will not be executed). All actions have to be

done in the transition "Action" routines

OR

// Method 2

 StateMachine_Init;

 while true do

 begin

 Statemachine_Step; // make the statemachine do one step

 // do other stuff here

 end;

The “StateMachine_Step” routine does the following:

 It calls its “….GetEvent” function to fetch (if any) a pending event,

 If compares all entries in its “State Transition Table”. If it finds an entry with its “from state”

matching the current state and with its “Event” matching the newly fetched “event” then

o It calls the appropriate “Action” routine with as parameters : “From” (the current state),

“Towards” (the next state), and the “event” that causes the transition.

o After that the actual state transition will occur: the current state of the stateMachine is set

to the new state

o It skips the remaining entries in the table (i.e. only the first matching entry is executed)

 If it does not find an entry in the table then no action and no transition takes place.

3 The interface part of the “StateMachine” library
unit StateMachine;

// interface

type

 TActionProc = procedure(From, Towards, Event: byte);

 TStateTransition =

 record

 Fromstate, ToState, Event: byte;

 Action: ^TActionProc;

 end;

 TStateMachineTable = array[1] of TStateTransition; // dummy size

// published variables

var CurrentState_: byte; // can be used to observe the current state (if necessary)

// published routines

procedure StateMachine_Run;

procedure StateMachine_Init;

procedure StateMachine_Step;

6

// external items

function StateMachine_GetEvent: byte; external;

const StateMachine_NrTransitions: byte; external;

const StateMachine_TransitionTable: array[1] of TStateTransition; external; // dummy size

implementation

[end of document]

	1 The StateMachine
	2 Using the Library
	2.1 Events and States Constants
	2.2 The Action procedures
	2.3 The StateMachine_NrTransitions constant
	2.4 The StateMachine_TransitionTable
	2.5 The StateMachine_GetEvent function
	2.6 Running the State machine

	3 The interface part of the “StateMachine” library

