
1

The StateMachine_2 Library

16-03-2014

Content
1 A State TransitionDiagram and a State Machine ... 2

2 Using the Library .. 3

2.1 The StateMachine Variables ... 3

2.2 Events and States Constants .. 3

2.3 The Action routines .. 4

2.4 The State Transition Table .. 5

2.5 The GetEvent function.. 6

2.6 Initialisation of a State Machine ... 7

2.7 Starting a State machine .. 7

2.8 Making a State Machine do its work .. 7

2.9 Stopping a State Machine .. 8

3 The interface part of the “StateMachine” library .. 9

The library ‘StateMachine_2’ provides a simple mechanism to build one or more state machines in the

program. It does support “SuperStates”. It does not provide state “entry”, “exit” or “Do” actions, only

transition related actions (it is a “Mealy” machine). It also has no event queue.

2

1 A State TransitionDiagram and a State Machine
What is a state machine? It implements a “state transition diagram” like the following:

In above state transition diagram (STD)

- Sx represent the different states the state machine can be in,

- The arrows show the transitions that can take place between states,

- Ex represent the events that cause such state transitions

- Ax represent the actions to take place when a state transition occurs. This action is optional.

In the STD above the state “S2” is a socalled “super state”, which means it has an internal state machine of

its own. This means 2 state machines will be needed: the main one (called “State Machine 1” in the

diagram), and the one for state S2 (called “State Machine 2” in the diagram). All items in state machine 2

have the “_2” suffix to make things clear.

A State Transition diagram is a good way to describe the behaviour of a system, and is easy to implement.

3

2 Using the Library
For this library the user has to provide a number of items in the program:

1. For each State Machine needed in the program: a variable of the type “TstateMachine” should be

created, see here.

2. For each state machine: make constants for Events and States, see here.

3. All “Action” routines that are mentioned in the State Transition Tables (see pt 2). Make sure that

these actions, if needed, start up or stop additional state machines as needed, see here.

4. For each State Machine: a constant table (a State Transition Table) representing the State

transition diagram of that state machine. Additionally a constant holding the number of state

transitions in the above State Transition Table, see here.

5. For each State Machine: a function of type “byte” which returns the event that occurred in the

system (zero means “no event”) meant to be executed by the state machine. Make sure all events

for that state machine are returned by this function, see here.

6. For each statemachine: initialise the state machine (routine “StateMachine_Init”) , see here.

7. Start all state machines that need startup (routine “StateMachine_Cold_Start”), see here.

8. In an endless loop: make ALL statemachines (started or not) do a “step” (routine

“StateMachine_Step”), see here.

9. Stop and restart a state machine if necessary, see here and here.

2.1 The StateMachine Variables
For each State Machine a variable of type “TstateMachine” is needed.

For example as in the STD:

var StateMachine1: TStateMachine; // 2 state machines needed

 StateMachine2: TStateMachine;

2.2 Events and States Constants
For each State machine constants have to be defined for its States and for its events. The initial state is

always state 0, a “no event” is always value 0.

Example for State machine 1:

// ------------ Event Constants --

const E1 = '1';

 E2 = '2';

 E3 = '3';

 E4 = '4';

 E5 = '5';

 E6 = '6';

// ------------ State Constants --

const S0 = 0; // initial state (always zero)

 S1 = 1;

 S2 = 2;

 S3 = 3;

4

Example for State Machine 2:

// ------------ Event Constants --

const E1_2 = 'a';

 E2_2 = 'b';

 E3_2 = 'c';

// ------------ State Constants --

const S0_2 = 0; // initial state (always zero)

 S1_2 = 1;

 S2_2 = 2;

As one can see the “Events” are characters in this example.

In above example the event values are characters (e.g. ‘1’), but they can be chosen freely, as long as they

are mutually exclusive.

The constant values (0..254 for states, 1..255 for events) can be chosen freely except in 3 cases:

 Events can not have the value zero (‘zero’ is ‘no event’),

 The initial state (here S0 and S0_2) has always the value zero.

 A value of 255 means “any state”. This value can only be used as “fromstate” in the State Transition

Table. AnyState can be used together with “general” events as .e.g safety or alarm events, where

the transition towards a certain state always has to occur.

2.3 The Action routines
In these “actions” all necessary code is executed that should when the state of a State Machine is changing.

They have the following signature:

procedure Action1(Id, From, ToWards, Event: byte);

As one can see the Action routines receive all the information they need to be able to do the correct thing:

The Identification of the state machine calling the Action (Id), the current state (From), the future state

(ToWards) and the event that causes the state transition (Event).

Examples (refer to the STD above):

procedure A1(Id, From, Towards, Event: byte);

begin

 display1(Id, From, Towards, Event, 'A1');

end;

procedure A5(Id, From, Towards, Event: byte);

begin

 display1(Id, From, Towards, Event, 'A5');

 PendingEvent2 := 0; // clear pending event for its state machine

 StateMachine_Cold_Start(Statemachine2); // entering substate, start its StateMachine

end;

procedure A6(Id, From, Towards, Event: byte);

begin

 display1(Id, From, Towards, Event, 'A6');

 StateMachine_Stop(Statemachine2); // leaving substate, stop its StateMachine

end;

5

As can be seen the actions A5 and A6 respectively start and stop State Machine 2. In above examples no

real work is done, except “display” the transition…

2.4 The State Transition Table
This is an array with elements of the following format:

fromstate, tostate, event, action

An example for statemachine 1 as in the above STD:

const StateMachine1_NrTransitions: byte = 6;

 StateMachine1_TransitionTable: array[StateMachine1_NrTransitions] of

TStateTransition =

 // format: fromstate, tostate, event, action

 (

 (S0, S1, E1, @A1),

 (S1, S0, E2, @A2),

 (S0, S3, E3, @A3),

 (S3, S0, E4, @A4),

 (S0, S2, E5, @A5),

 (S2, S3, E6, @A6)

);

An example for statemachine 2 as in the above STD:

const StateMachine2_NrTransitions: byte = 4;

 StateMachine2_TransitionTable: array[StateMachine2_NrTransitions] of

TStateTransition =

 // format: fromstate, tostate, event, action

 (

 (S0_2, S1_2, E1_2, @A1_2),

 (S1_2, S2_2, E2_2, @A2_2),

 (S2_2, S1_2, E2_2, @A3_2),

 (S2_2, S0_2, E3_2, @A4_2)

);

The table is scanned in the order stated in the table.

Once a matching entry is found (fromstate and event match) the action is executed and the transition is

made, the rest of the table is not scanned further.

The order of the entries in the table is of no importance (normally the entries in the table are mutually

exclusive) except when the “AnyState” value (255) is used as a “fromstate”. The latter should be placed

below more strong transitions (that is: where the fromstate does not equal “anystate” for a certain event).

6

e.g.:

const StateMachine2_NrTransitions: byte = 5;

 StateMachine2_TransitionTable: array[StateMachine2_NrTransitions] of

TStateTransition =

 // format: fromstate, tostate, event, action

 (

 (S0_2, S1_2, E1_2, @A1_2),

 (S1_2, S2_2, E2_2, @A2_2), // first the occurance of E2_2 will be checked in state S2_2

 (S2_2, S1_2, E2_2, @A3_2),

 (S2_2, S0_2, E3_2, @A4_2),

 (255, Sx_2, E2_2, @Ax_2) // goto Sx_2 from any other state than S2_2 when E2_2 occurs

);

If no action is needed during a state transition “nil” should be specified as action. Actions may be used for

different transitions.

2.5 The GetEvent function
Each State Machine should have one.

This function has the following signature:

function StateMachine_GetEvent: byte;

An example for statemachine 1 as in the above diagram:

function StateMachine1_GetEvent: byte;

begin

 Result := PendingEvent1; // Fetch the Event (if some) that occured in the system

 PendingEvent1 := 0; // clear the pending Event

end;

An example for statemachine 2 as in the above diagram:

function StateMachine2_GetEvent: byte;

begin

 Result := PendingEvent2; // Fetch the Event (if some) that occured in the system

 PendingEvent2 := 0; // clear the pending Event

end;

As one can see the (pending) event variable is returned by the function and subsequently cleared.

The variable “PendingEventn” (name can be freely chosen) has to be given the correct value by the process.

A value of 0 means “no event”, a value of >0 means “something happened” (e.g. a button was pushed of a

temperature rised above a limit). The process can of course use more than one “PendingEventn” variable to

gather multiple events. They must all be represented by a different number however.

7

2.6 Initialisation of a State Machine
Each state machine should be initialised . During initialisation the following is assigned to the state

machine:

 An Identification, any number between 0 and 255. This number will be the first parameter when an

“Action” routine is called.

 The state Machine Variable involved,

 The appropriate State Transition Table

 The appropriate Nr of Transitions in above table

 The appropriate “Get_Event” routine

Example for State Machine 1:
StateMachine_Init(1, StateMachine1, @StateMachine1_TransitionTable,

StateMachine1_NrTransitions, @StateMachine1_GetEvent);

Example for State Machine 2:

StateMachine_Init(2, StateMachine2, @StateMachine2_TransitionTable,

StateMachine2_NrTransitions, @StateMachine2_GetEvent);

2.7 Starting a State machine
This is quite simple.

2 methods exist:

 Call the “StateMachine_Cold_Start” routine. A cold start always resets the current State of the

machine to zero before actually switching it on

OR

 Call the “StateMachine_Warm_Start” routine. A warm start routine only swithes the state

machine on, it keeps the state it was in.

Example for State Machine 1:

PendingEvent1 := 0; // clear pending events for State Machine 1 (optionally)

StateMachine_Cold_Start(StateMachine1); // start state machine 1

Example for State Machine 2:

PendingEvent2 := 0; // clear pending event for its state machine (optionally)

StateMachine_Cold_Start(Statemachine2);// entering substate, start its StateMachine

2.8 Making a State Machine do its work
Initialisation and Starting a State Machine is not enough to let it do its work. One should call in an endless

loop the routine “StateMachine_Step” after Initialisation of the State Machine.

This “step” routine will call the “GetEvent” routine, evaluate the event and the current State against the

state transition table, call the appropriate “Action” routine, and set the Current State to a new value.

The “StateMachine_Step” routine can be called always, also when a state machine is stopped (it has be be

initialised though).

Example:

8

while true do

 begin

 // gather events occuring in the system (can be done in any routine)

 …

 Statemachine_Step(StateMachine1); // make the statemachine 1 do one step

 Statemachine_Step(StateMachine2); // make the statemachine 2 do one step

 // do other stuff

 end;

The “StateMachine_Step” routine does the following:

 It calls its “….GetEvent” function to fetch (if any) a pending event,

 If compares all entries in its “State Transition Table”. If it finds an entry with its “from state”

matching the current state and with its “Event” matching the newly fetched “event” then

o It calls the appropriate “Action” routine with as parameters: “Id” (the calling state machine

identity), “From” (the current state), “Towards” (the next state), and the “Event” that

causes the transition.

o After that the actual state transition will occur: the current state of the stateMachine is set

to the new state

o It skips the remaining entries in the table (i.e. only the first matching entry is executed)

 If it does not find an entry in the table then no action and no transition takes place.

2.9 Stopping a State Machine
A State Machine can always be stopped (it does not react any longer to its events), and Cold or Warm

started again.

Example for State Machine 1:

StateMachine_Stop(StateMachine1);

…

StateMachine_Warm_Start(StateMachine1); // proceed in the last state the machine was in

9

3 The interface part of the “StateMachine” library
unit StateMachine_2;

// interface

uses StrngUtils;

type

 TGetEventProc = function: byte;

 TActionProc = procedure(Id, From, Towards, Event: byte);

 TStateTransition =

 record

 Fromstate, ToState, Event: byte;

 Action: ^TActionProc;

 end;

 TStateMachineTable = array[1] of TStateTransition; // dummy size

 TStateMachine =

 record

 Ident : byte;

 TransitionTable : ^const TStateMachineTable;

 NrTransitions : byte;

 GetEventProc : ^TGetEventProc;

 Running : boolean; // running or stopped

 CurrentState : byte; // the current state of the state machine

 CurrentEvent : byte; // the current event to react upon

 NextState : byte; // the future state of the state machine

 end;

// published routines

procedure StateMachine_Init(ID: byte; var Machine: TStateMachine; Table: ^const

TStateMachineTable; Nr: byte; EventProc: ^TGetEventProc);

procedure StateMachine_Cold_Start(var Machine: TStateMachine);

procedure StateMachine_Warm_Start(var Machine: TStateMachine);

procedure StateMachine_Stop(var Machine: TStateMachine);

procedure StateMachine_Step(var Machine: TStateMachine);

implementation

[end of document]

	1 A State TransitionDiagram and a State Machine
	2 Using the Library
	2.1 The StateMachine Variables
	2.2 Events and States Constants
	2.3 The Action routines
	2.4 The State Transition Table
	2.5 The GetEvent function
	2.6 Initialisation of a State Machine
	2.7 Starting a State machine
	2.8 Making a State Machine do its work
	2.9 Stopping a State Machine

	3 The interface part of the “StateMachine” library

