ccrf  2.0.0.0
Main Page

ccRF click

ccRF click is a low-power 2.4 GHz transceiver designed for the 2400- 2483.5 MHz ISM and SRD frequency bands. It features CC2500 Low-Power 2.4 GHz RF transceiver as well as PCB trace antenna. The CC2500 is integrated with a highly configurable baseband modem that supports various modulation formats and has data rate up to 500 kBaud.

click Product page


Click library

  • Author : MikroE Team
  • Date : jun 2020.
  • Type : SPI type

Software Support

We provide a library for the ccRf Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for ccRf Click driver.

Standard key functions :

Example key functions :

  • ccrf_transmit_packet Function transmit a packet with packet length up to 63 bytes to the targeted 8-bit register address.
    void ccrf_transmit_packet ( ccrf_t *ctx, uint8_t *tx_buffer, uint8_t n_bytes );
  • ccrf_receive_packet Function receive a packet of variable packet length.
    uint8_t ccrf_receive_packet ( ccrf_t *ctx, uint8_t *rx_buffer, uint8_t *length_buff );
  • ccrf_get_start Function for getting state of GD0 pin function.
    uint8_t ccrf_get_start( ctx );

Examples Description

This example demonstrates the use of an ccRF click board by showing the communication between the two click boards configured as a receiver and transmitter.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, performs the click default configuration and displays the selected application mode.

void application_init ( void )
{
log_cfg_t log_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
ccrf_cfg_setup( &cfg );
CCRF_MAP_MIKROBUS( cfg, MIKROBUS_1 );
ccrf_init( &ccrf, &cfg );
ccrf_default_cfg( &ccrf );
#ifdef DEMO_APP_TRANSMITTER
log_printf( &logger, " Application Mode: Transmitter\r\n" );
#else
log_printf( &logger, " Application Mode: Receiver\r\n" );
#endif
log_info( &logger, " Application Task " );
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 2 seconds.

void application_task ( void )
{
#ifdef DEMO_APP_TRANSMITTER
log_printf( &logger, " The message \"%s\" has been sent!\r\n", ( char * ) DEMO_TEXT_MESSAGE );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#else
uint8_t data_buf[ 64 ] = { 0 };
uint8_t data_len = sizeof( data_buf );
if ( CCRF_CRC_OK == ccrf_receive_packet( &ccrf, data_buf, &data_len ) )
{
log_printf( &logger, " A new message has received: \"" );
for ( uint16_t cnt = 0; cnt < data_len; cnt++ )
{
log_printf( &logger, "%c", data_buf[ cnt ] );
}
log_printf( &logger, "\"\r\n" );
}
#endif
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ccRf

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ccrf_t
Click ctx object definition.
Definition: ccrf.h:204
CCRF_CRC_OK
#define CCRF_CRC_OK
Definition: ccrf.h:173
ccrf_cfg_t
Click configuration structure definition.
Definition: ccrf.h:221
CCRF_MAP_MIKROBUS
#define CCRF_MAP_MIKROBUS(cfg, mikrobus)
Definition: ccrf.h:67
ccrf_default_cfg
void ccrf_default_cfg(ccrf_t *ctx)
Click Default Configuration function.
application_task
void application_task(void)
Definition: main.c:69
ccrf_cfg_setup
void ccrf_cfg_setup(ccrf_cfg_t *cfg)
Config Object Initialization function.
ccrf_get_start
uint8_t ccrf_get_start(ccrf_t *ctx)
Get state of GD0 pin function.
ccrf_transmit_packet
void ccrf_transmit_packet(ccrf_t *ctx, uint8_t *tx_buffer, uint8_t n_bytes)
Transmit packet data function.
ccrf_receive_packet
uint8_t ccrf_receive_packet(ccrf_t *ctx, uint8_t *rx_buffer, uint8_t *length_buff)
Receive packet data function.
application_init
void application_init(void)
Definition: main.c:36
ccrf_init
err_t ccrf_init(ccrf_t *ctx, ccrf_cfg_t *cfg)
Initialization function.
DEMO_TEXT_MESSAGE
#define DEMO_TEXT_MESSAGE
Definition: main.c:31