Introducine TI MSP430 Microcontrollers

Texas Instruments (TI) is a well-known US-based semiconductor manufacturer. Tl is perhaps best
known to many as the manufacturer of some of the fanciest scientific calculators in the market. Of the
long list of electronic devices produced by Tl, microcontrollers are on the top. Tl manufactures some
of the coolest and advanced microcontrollers of the market today. There are several categories of
micros from TI. These include general purpose low power MCUs which mainly comprise of MSP430s,
ARMs like TM4Cs, MSP432s, etc, micros for wireless communications like CC2xxx series, ARM + DSP
micros, DSP-specialized micros like the TMS32xxx series and so on. It will look as if Tl is committed
toward mixed signal microcontrollers that are engineered for highly sophisticated industrial
challenges. This issue will cover an insight of value-line MSP430 general purpose micros.

MSP430s are not seen as much as the popular 8051s, PICs and AVRs. In most of the Asian market, for
example, MSP430s are rare when compared to other microcontrollers and even still rare when
compared to other chips produced by Tl itself. | don’t know why there is such an imbalance. Perhaps
one big reason is its inclination towards low power consumption and limited resources. Low-power
means that these MCUs are crafted for special low power applications unlike most other micros.
Secondly Tl micros are a bit expensive than other micros. Despites these, Tl has provided some great
tools for making things simple. You can get your hands on some cool MSP430 chips through some
affordable Launchpad boards and still it worth every penny learning MSP430s. Firstly, it is a family of
ultra-low power high performance 16-bit (16-bit data bus) micros which are unlike the popular 8-bit
platforms. Secondly MSP430s have highly rich internal hardware peripherals that are second to none.
For instance, MSP430s can be operated over a wide voltage and frequency ranges. Another great
feature that is less common in most 8-bit micros is the DMA controller. Fortunately, MSP430s possess
this. Probably it is your first such micro family that is somewhere between 8-bit and 32-bit micros. In
the end, MSP430s will surely give you a taste of absolute American technology and concepts.

The MSP430 Family

Shown below is the family tree of MSP430 series microcontrollers from TI.

. Tl MSP Microcontroller

MSPA30FR MSPA30F/G CCA30 Sub-GHz MSPA30C/L Low
Series Series Series Voltage Series

M5P432 Series

Advanced
combination of
MS5P430s with the
processing power of
ARM Cortex M4F
engine

Fast and high o5 .) 30s inte
endurance FRAM NT;;;;S:::;?:; MSP430s with MSP430s intended
memaory technology-
based M5P430
micros

. ; embedded sub-GHz for E)l‘l_re mely low
intended for typical operating voltages
uses and general

applications

radio transceivers

The most common MSP430 micros are the MSP430FR series, MSP430F series, MSP430G series and
the newly introduced MSP432 series.

MSP430FR series micros mainly feature high reliability, high endurance, 10-year data retention non-
volatile FRAM (ferroelectric random-access memory) memories. This series offer 16-bit solutions for
ultra-low-power sensing and system management in areas like smart building management systems,
smart grids, military and industrial designs. They feature the lowest standby power consumption of
about 350 nA with RTC, 100 pA/MHz active power consumption and the unique ability to save and
instantly restore system state right after power failures.

MSP432 series micros are the perfect combinations of MSP430 low-power portfolio with advanced
mixed-signal features and the high-performance processing capabilities of 32-bit ARM M4F engine.
These micros have high measurement precisions and contain high performance peripherals like high
resolution differential ADCs, DMA, IOT connectivity, etc. This series fills the gap between 16-bit
MSP430s and 32-bit ARM architecture and as of this moment this series is the most recent
development in the MSP430 family.

CC430 series is a small series of MSP430s with almost all features one can find in a typical MSP430
micro and embedded sub-GHz radio transceievers. They are well-stuffed true System-on-Chip (SOC)
solutions that remove the necessity of additional off-board wireless solutions.

Yet another tiny series of MSP430 micros include MSP430Cxx and MSP430Lxx micros. These micros
are intended for extreme low voltage (0.9 — 1.65V) operations. With just one Nickel Cadmium (NiCd)
battery it is possible to run any micro of this series. They feature low resolution analogue frontends
and low pin counts.

https://www.digikey.com/products/en?FV=ffec92ce&WT.z_slp_buy=texas-instruments_msp430

The only series that is left to be discussed is the general purpose MSP430s series microcontrollers. By
general purpose, it is meant that these micros can be use in almost any scenario. It is this series of
micros that we will be dealing here. The table below summarizes this family:

60

Flash (KB}

ROM (KB}
RAM (KB)

Pin Count

MIPS
VDD (V)
Max. Clock (MHz)

Hardware
Peripherals

Note

1—

1-16

0.1-10

14, 22and 48

1B-36

ADCI0, ADC12,
DAC12, up to two
16-bit Timers, WOT,
SW5, USART, DMA,
Brownout Reset,
Comp_A, 16x16
H/W Multiplier

Flash-based and
similar to

MSP43 oo series
without LCD H/W
support

05-120

Flashusedas ROM
0.1-8

10, 11, 16, 24, 32
and 48

16
1B8-36

16

Op Amps, ADC10,
ADC12,5D16_A,
5D12_A, Capacitive
Touch I/0s, DAC12,
up to two 16-bit
Timers, Comp_A+,
Brownout Reset,
SWS, USI, USCI,
WDT=, VLO, DMA,
16=16 HfW
Multiplier

Valuedine-devices
intendedfor
mainly for medical
instrumentations

For now, don’t struggle to understand the
them as we proceed.

NfA
OTP UV ROM

2-32

05-1

14 and 40

25-55

14-bit Slope ADC,
UART, FLL, H/W
Multiplier, LCD
Controller, WDT,
PWM

Oldest and now
obsolete

MSP430x2xx | MSP430x3xx | MSP430F4xx

4-120

FlashusedasROM
02-8

14, 32, 48, 56, 68,
72 and 80

8-16
1E-36

16

ADC10, ADC12,
SD16_A, SCAN_IF,
ESP430, DAC12, Op
Amps, RTC, upto
two 16-bit Timers,
WDT+, Basic Timer,
Brownout Reset,
SWS, USART, USCI,
LCD Contraller,
DMA, 16x16 &
32%32 HiW
Multiplier, FLL,
EVE, Comp_A+

Upgraded
MSP430n 3
intendedfor low
power instrumens
with LCDs

abbreviations of this table

MSP430F5xx/6xx

MSP430F4xx

MSP430F2xx

MSP430G2xx

MSP430F1xx

MSP430x5xx

1-512

Flashusedas ROM
1-66

29, 31,47, 48, 63,
67, 74and 87

25
16-36

25

ADC10, ADC12,
High Resolution
PWM, USB, Backup
Battery Switch, up
to four 16-bit
Timers, WDT+,
RTC, Brownout
Reset, SW5, USCI,
DMA, Comp_B,
3232 HfwW
Multiplier, 5V
Tolerant 1/0s

High performance
MCUs with USB

MSP430x6xx

L=Fix

FlashusedasROM

1-66

74

25

16-36

ADC10, ADC12,
DAC12, High
Resolution PWM,
USB, uptofour 16-bit
Timers, WDT+, RTC,
Brownout Reset, LDO,
SVS, SVM, USCI, DMA,
32%32 H/W Multiplier,
Comp_B, 5V Tolerant
1/0s, LCD Controlier

Advancedvariant of
MSP430u50c with
additional hardware
like LCD controller

. You’ll eventually know about

Note that there are some other MSP430 devices that are not accounted here. These devices are either
rare or subset of the mentioned families. If you want to know more about MSP430s then you can read
the following Wikipedia article: https://en.wikipedia.org/wiki/TI MSP430.

https://en.wikipedia.org/wiki/TI_MSP430

Launchpad Boards and BoosterPacks

Launchpad boards are affordable MSP430 evaluation kits. For just few dollars, you can have your own
Launchpad boards. They are so cheap that an average school-going student can afford one with
his/her own pocket money. However, this cheapness doesn’t compromise quality nor performance.
They are more-or-less alike Arduino boards in terms of board size and on-board resources except they
don’t share same pin naming conventions and board layouts. Well that’s not a big issue. However, it
would have been better if the Launchpads shared Arduino-like form factor. This would have enabled
using Arduino shields with Launchpads. Tl has, however, its own brand of shields called BoosterPacks
and they seem to like promoting their own idea, owing to which there’s still no official TI Launchpad
that share exactly Arduino form-factor/shape. It is a very aggressive marketing boldness. Shown below
is the BOOSTXL-EDUMKII BoosterPack. It is just like Arduino Esplora with lots of on-board sensors and
devices except for the MCU. It is good for game development and sensor applications. There are other
useful BoosterPacks dedicated for capacitive touch, displays and so on.

Launchpad boards are not the only development boards offered by TI. There are many other dev
boards too. Shown below is the TI MSP-EXP430F5438 Bluetooth platform development board.

B
i
=
i

;:
7]
B
-
i
Jal;
=

um"“' T phieo

However due to cheapness and relatively good availability Launchpad boards are by far most popular,
particularly the MSP-EXP430G2 Experimenter’s Launchpad board.

Meet

the
<=| LaunchPad.

This board comes boxed with two micros — MSP430G2452 and MSP430G2553. Both of these mixed-
signal MCUs come in PDIP packages. We can take them off from the board and use them in bread
boards, strip boards, PCBs, etc. Shown below is the layout of a MSP-EXP430G2 Launchpad board.

USB Port I{L MSP430G2 Launchpad

= Onboard
| e I SE <: Programming
Interface

User LEDs Iﬁ E Reset Button

Just like any other evaluation kit, every Launchpad comes embedded with user LEDs, buttons, /0 port
headers (also known as BoosterPack connectors), onboard power supply, USB-to-serial converter and
programming interfaces.

MSP430s are ultra-low power 16-bit general purpose microcontrollers. A MSP430 micro consists of a
16-bit RISC CPU, wide variety of feature-rich peripherals and a flexible clock system all under the hood
of a von-Neumann architecture. Because of their ultra-low energy consumption profile, MSP430s are
well-suited for battery/solar powered/limited or renewable energy applications.

A S S S T — — — — -— A T S S S ————

I

| C > ACLK l

I Sylsc.,l;; Egﬂ’r RAM Penpheral[—|Peripheral[—|Peripheral |

> SMCLK — — |

|

| MCLK NN NN PN | PR | PR | I

| _ |

| A e N B PN

I | | || MaBiEBY | =3t e e 1 > =

I |risc cpu 3 I

|| 16-Bit =

|) |

=

| S - '

| <: 7| MDB16-Bit __ Bus < MDB 8-Bit > |

| I
JTAG § | |

| N NS . | RV RV |

| ACLK —9 m — — :

| SMCLK —¥ Watchdog[|Peripheral Peripheral| " |Peripheral| | Peripheral |

1 |

. ————— J—

MSP430G2452 and MSP430G2553 are both almost identical in terms of hardware peripherals and pin
count. MSP430G2553 has some additional hardware features like more RAM-ROM memories, timers
and USCl-based hardware interfaces for LIN and IrDA communications.

Shown below is a comparison table of some common MSP430 chips usually found with Launchpad

- MSP430G2201 MSP430G2452 | MSP430G2553

boards.

Program Memory (kB) 16

128 128 256 512
10 10 16 16
N/A 10 10 10

Capture/Compare 2 2 3 3
Hardware

Other Launchpad boards contain other chips but fortunately they share the same pin layout and so
they are fully pin compatible. The fourteen pin parts and twenty pin parts share the same pin layout
as shown below:

ovecm] 1 14{20 [Dovss

P1.0 (LEDY)O] 2 131 19 D XINP2.6

P11 (TxD) O 3 12118 J0 xouUTP2.T

P1.2 (RxD)OY 4 Mk 1117 [D TESTISBWTCK

P13 (5210 5 10! 16 [0 RET/INMUSBWTDI (1)

P14 6 ai15@P1T
P50 T 8114 JO P1.6 (LEDZ)
p2o0f & 1aoe2s
P21 & N20 12f0r24
p2 200 10 1foer2a

Though the pin names are labelled properly on the silkscreens of the boards, it is sometimes necessary
to check the schematic for details. Shown below is the basic schematic of a MSP-EXP430G2 Launchpad.

Ext_PWR
Js[o
8
RST/SBWTDIO _ P1.3
GND R .
s\ aF
: vee
=
i
= = R34 Rzz GND
T 1ouFrov o 4
20|F(’:i;| Socket
? 1 vee 20 GND
o RS Nz X 4 lie TXNR Xl
1= R 3 i 18 XOUTR_XOUT
HE P1.2 4 17 TEST/SBWICK
DNP 08 5 P1.3 5 16 RST/SBWTDIO
o = 5 4 15 P17
¢ Eow 7 5 7 4 P16
3 GND 5 P2 0 B 3 P25
nyg ROB E] P2 1] 2 P24
e T 10 P22 1 1 P23
12pF R Socket, TBD
w0 Raz J5-18 Pi0 Type: TBD F|o
2 E
LEDA Z70R —
green J5
B Z'H P16 "
LEp2 a70R =[S
GND
1w bl
GND = DNP

@
o

From the schematic, we can see what has been placed on the board by default. Parts labelled DNP are
not placed on a fresh Launchpad board. These have been left for the users.

If these don’t matter much and you need something simpler, then there are Arduino-like pin maps for
Launchpads. Though they are made for Energia IDE, they are useful for quick overviews.

ﬂ Energia LaunchPad with MSP430G2452

Revision 1.5

Hardware
Pin number

Flash B KB [s
Serial TimerSerial
& analogRead()
‘:2 digitalRead() and digitalWrite(
ri digitalRead(), digitalWrite()
e and analogWrite()
1
2 I
= « =
w
A =
5 I W
6 1 S A7 [MISO (80)
7 B 4
8 B
4]
9 y M
10 - -
.J@T)..
INSTRUMENTS
Rei Vilo, 2012
embeddedcomputing.weebly.com

version 1.3 2102-09-09

Energia LaunchPad wit_i_\ MSP430G2553
Revision 1.5 Fa
Pin number
[sP
Flash 16 KB
Serial Hardware

analogRead()
digitalRead(and digitalWrite()
digitalRead(), digitalWrite()
and analogWrite()

| ammeEs

1S3L
DOA

Ty T 13s3d

USH2

MOSI (B0)
MISO (80) GREEN_LED|

©O~NOM AR WON -

<
e
5
@
o
(0]
N
o
o
@

10

INSTRUMENTS

Rei Vilo, 2012
m i .com
version 1.3 2102-08-09

Hardware

We will obviously need a MSP430 Launchpad board. For this tutorial, | used MSP-EXP430G2 Launchpad
board with MSP430G2553 and MSP430G2452 microcontrollers.

Apart from the Launchpad board, we will need basic tools like a digital multimeter (DMM), wires or
jumper cables, a power bank and other stuffs typically available in an Arduino starter kit like the
RIASpire one shown below.

An additional external or off board programmer/debugger is not needed since MSP430 Launchpad
boards come with on board Spy-Bi-Wire (SBW) programming/debugging interface. This interface

http://riaspire.com/

utilizes pins labelled TEST and RST apart from power pins and so only four wires are needed. Note
reset pin should be externally pulled up. Check the diagram below.

Similarly, we don’t need to buy/use any external USB-serial converter for serial communication as the
boards come with onboard hardware for this communication.

SBW & UART I/F to Argon

Bl I B E
BTXD B E P12 RST/SBWTDIO P1.3
BREXD E T P11
E _'-'f'f' 2 1 VO o4 -
K
) 0 E'lﬁ & E'
VCC) ' '
R34 rR27 GND
47K |:| 4TK
ECIlFEi? Socket
] =-\/CC 1 20 GND 4= 2o]
Hz* P1.0 2 ~ [i9 XINR _ XIN ik
4 E | 3 18 XOUTR _XC iEl
4 P1.2 4 17 TEST/SBWICK #= 17[,
o B P1.3 5 16 4 RST/SBWIDIO %= 16],
16 4 6 15 1.7 i M
o P1.5 Fi 14 P1.6 141,
; & P2.0 g 13 P25 13 ;
4 E P2 1 g 12 Pz 4 2],
4 I 555 T — B5a)
— Socket: TBD e
J1 = . ol J2
|
DNP
0 GND

In all Launchpad boards, there are headers with jumpers as shown below to separate onboard
programmer from the target. This allows us to use a Launchpad board as standalone programmer. We
can also detach it. The top dotted line marks the border between the target and the programmer.

10

It is still nice to have one external MSP-FET programmer. FET stands for Flash Emulation Tool and it
supports both JTAG and SWD interfaces. FETs are pretty expensive tools.

Lastly, I strongly recommend having an oscilloscope or a logic analyser for checking signals and timing-
related info. In many cases, informations provided by these tools become extremely necessary.

11

Software

There are numerous ways of learning and using a new microcontroller family effectively. A number of
C/C++ compilers are available for coding MSP430 micros. Hobbyists and novice users find Arduino-like
solutions easy and quick but from an engineer’s perspective such solutions are inexplicably incapable
of extracting the sweet fruits of a well-armed microcontroller. Rawer approaches are preferred by
professionals but they too seek reduced efforts and quick solutions. The learning curve is also needed
to be a smooth one. In this segment, we will checkout some common software solutions for MSP430s.

Firstly, there is the free open-source Energia IDE. This is an Arduino-like IDE that enables users to code
MSP430s in the Arduino way. It supports many Launchpad boards including those which are based on
ARM cores. | have used it a lot and it is fun using it for simple hobby projects. However, | wanted to
harness the true power of MSP430s. As with Arduino, you can access MSP430 registers in Energia too
but that doesn’t make significant differences in terms of coding efficiency and memory consumptions.
Energia has the same issues as with Arduino. Arduino framework on top of an AVR makes it much less
robust when compared to a crude AVR. The same thing applies for Energia too. Another key limitation
of Energia is the fact that not all MSP430 chips are supported by it. Energia is, however, very easy to
use, quick and useful for rapid prototyping or testing. The costs are low overall efficiency and larger
code size. Just like Arduino, Energia is not well-suited for highly sophisticate professional projects. It
is just a rapid prototyping tool that we can use to check a proof-of-concept but not the right tool to
build that concept. A smaller hammer is useful for nailing a pin but it is not the perfect tool for breaking
a giant boulder.

Energia is available at http://energia.nu/.

@ Blink | Energia 0101E0017 - *
File Edit Sketch Tools Help

_

*) A

/4 most launchpads have a red LED
#define LED RED_LED

//see pins_energia.h for more LED definitions
//#define LED GREEN_LED

/4 the setup routine runs once ghen you press reset:
woid setup() {
// initialize the digital pin as an output.
(LED, OUTPOT) ;
!

/4 the loop routine runs over and over again forever:
void 0
(LED, HIGH); // turn the LED on (HIGH is the voltage level)
{10003 ; // wait for a second
(LED, LOW}; // turn the LED off hy making the woltage LOW
(1000): /4 wait for a second

Please note that Energia is not supported by the Arduino LCC which means it not developed or
maintained by the guys from the Arduino team. This doesn’t matter much for its users. However, the
IDE is not frequently updated like the Arduino IDE.

12

http://energia.nu/

Next, we have TI's own compiler — the Code Composer Studio (CCS). CCS is a C/C++ compiler based on
Eclipse IDE. CCS comes with TI’s proprietary compilers that are best in code optimization. Those who
have used Eclipse-based IDEs before know the advantages Eclipse framework brings with it. It has an
excellent code navigation system, perspective views, refactoring, etc. CCS compiler comes with all of
these stuffs and many more like debugger interface and Tl App Store. Apart from all these there are
some helpful cloud-based tools from TI. This tutorial is based on CCS compiler. It is free for download
from TI's website - http://www.ti.com/tool/ccstudio. Make sure you have a Tl account.

%% MSP430 CCS Code Examples - CCS Edit - GPIO/main.c - Code Composer Studio - X

File Edit View Navigate Project Run Scripts Window Help

e R =0 i = B B0 e v a2 |8

& | [8 mainc 53 | T mspa30g24szh =0
1#include <msp43@g2452.h>

[} 5

oid main(void)

WDTCTL = (WDTPW | WDTHOLD);
PIDIR = @x41;

for(s:)
{

P1OUT = @x81;

i}

RI0UT. = exdn. =

delay cycles(60009); =
¥

B Console 52 O G5 B EE MBry = O [Froblems § Advice 5 = &
CDT Build Console [GPIO] 8items

"GPIO.oUt" TIMERG_AG ==> TIMERG_A® - -

GPTO it WDT me3 WDT DES(.Npt\Dn Resource Path Location

"GPIO.out" COMPARATORA ==> COMPARATORA 1 Optimization Advice (3 items)

"GPTO.out"” NMI ==> NMI i Power (ULP) Advice (5 items)

"GPIO.out” .reset == .reset
'Finished building: GPIO.hex'
% Build Finished ** v

Writable Smart Insert 1n:22

Then there is IAR compiler. | have never used IAR products but | have heard from many that it is very
popular and widely used. However, it is expensive too.

Lastly, like for many other platforms we have the free open-source GCC compiler for MSP430s.
MSP430 GCC can be integrated with CCS IDE.

We will see during coding that compilers don’t make significant differences in coding style, making
codes cross-platform compatible. | also intend to keep things simple and quick. This is why | focus on
tools rather than other stuffs. With right set of tools, any issue can be addressed decently and rapidly.

Additionally, some more software tools are needed for supportive purposes. Proteus VSM is a good
interactive simulator cum PCB design software. Luckily it supports MSP430 micros. However, it is very
expensive unless you are using a pirated version of it. Frankly speaking, | have never advocated for
simulations because simulations do not address the real-world challenges we encounter in a real-life
real-time project. Simulations, for example, cannot simulate real-world environment conditions nor
can they emulate situations which result in “hang”-like stuck up conditions. Simulations don’t take the
effect of noise and electromagnetic disturbances into account. Additionally, sometimes simulations
give wrong results. | have spent many wasted hours trying to debug an issue with simulation only to
find out that the simulation was incorrect. Still however, simulations are helpful in some special cases.
For instance, when designing a LCD menu, simulation is a time and effort saver. Personally, |
recommend and use real-world debugging over simulations. This gives me a lot of confidence.

13

http://www.ti.com/tool/ccstudio

. slan120 - Protaus § Professional - Schematic Capture
File Edt View Tool

wy Lbrary Templse Syssem Help

DEAN AIONARR=R0 B+ +44a4% 90 4bn EREE asss [Ea 1@ CDY w3
¥ Schematic Capture X

[™ |

|| A

3 Aol

M

MOTOROC
MSPAIETIZ)
MSPAI0F24TI
hoT

U
=|o
il
e
0
@
z
A
=
[
®
A
-]
+

e
s

00 vl vl PAM ot
This example uses Times_B cnfhe MSPA30F 2471, bud Timss_A ook s be used

PRBTEUS SLAA116 Using PWM Timer_B as a DAC i m
The Complete Electronics Design System UMENTS

P b Il B O iMemageis) BaseDesgn v ANIMATING: D0-00-05 405852 (CPU load T0%)

The coolest stuffs for MSP430s are TlI's MSP430Ware driver libraries (driverlib) and GRACE. Driver
libraries remove the pain of traditionally coding MSP430s using registers. Driver libraries provide easy-
to-use API functions for configuring MSP430 peripherals just like the Standard Peripheral Libraries
(SPL) of STM8 micros. However, these libraries are only supported for the newest and resource-rich
MSP430 microcontrollers like the MSP430F5529LP. This idea of driver libraries is quickly gaining mass
popularity and is becoming standard day-by-day for all modern era micros. MSP430Ware can be
downloaded for free from http://www.ti.com/tool/mspware.

O A ® =

AP Programmers Guide sl
. L T I R T L L R VI P R
® Texas INSTRUMENTS -

2.80.00.01
ManPage | Moowes | DamStchres | Files

»aciza gpio

Functions
void GPIO_setAsOutputPin (uint8_t selectedPort, uint16_t selectedPins)
This function configures the selected Pin as output pin, More

woid GPI0_setAsinputPin (uintd_t selectadPort, uint] 6.t selectedPins)

function configures the selected Pin as input pin. More

woid GPIO. (uint8_t uint16.t
This f eripheral module functi output direction for
aduleFunctioninputPin

he peripheral module fi

woid GPI0.
s fun s
woid GPIO_setOutputLowOnPin (uintB_t selectedPor
This function sets output LOW on the selected Pin. More
void GPIO_toggleOutputDnPin (uint8_t selectedPort, uint16_t selectedPins)
This function toggles the cutput on the selected Pin. More

woid GPIO_s (uintd_t uint16._1 selectedPins)
This fur More

void GPI 51
This s the selected Pin in inj

wint8_t GPI0_getinputPinValue (uint8_t selectedPort,
This function gets the input value on the selected pin. Mor

You can use TI's Resource Explorer to check out what'’s in driverlib and if your target MCU is supported.

GRACE, on the other hand, is intended for relatively less-resourceful micros like the MSP430G2231
that are mostly well-suited for lower level assembly language environments. GRACE is basically a

14

http://www.ti.com/tool/mspware

graphical code generator tool, much like the STM32CubeMX that can be used to generate setup
configuration codes for MSP430F2xx, MSP430G2xx and some FR series micros. However, GRACE only
generates register values for small MSP430 micros. For large and advanced MSP430 micros driverlib-
based codes are generated instead of register-level codes. The rest is just like coding any other
microcontroller. Throughout this tutorial, GRACE has been used for all demos.

Grace - o0 x
File Ear Niew Help
ry- LY

ety i =]
Grace (MSP430) - MSP430G2955 * 3
Welcome

PIxPIx PIPAx

g e

Puispip patspard
280 2B
eapabiEy,

i

e

)
R i
o, 5P

o
Retes,
i | [oscr
ne (|

FEThm

Grace
File Edit View Help
gz BRl4E
| & “test.cfg 52]

Grace (MSP430) * Clock - Power User Mode

Qverview Basic User Registers
Configure Clock Source Select Clock Source
Internal High Spesd Clock Sourcs Clock Source Divider Main System Clock (MCLIK)
Internal DCOP 160000 | kHz —DCOCLK ~ Divide by 1 16000 kHz
Precalibrated DCO Values |16 MHz Output MCLK Mo MCLK Pins
Disable DCO O
Clock Source Divicer Sub System Clock (SMCLK)
— DCOCLK v Divide by 1 16000 kHz
Output SMCLK SMCLK Output OFF ~
Low / High Speed External Clock Source 1 Clack Source from Divider Auxiliary Clock (ACLK)
Low / High Speed 2 ke
Select Clock Source™ 12 kHz ~ External Clock Divide by 1 >
Source 1
T 12.0| kHz Output ACLK ACLK Output OFF v

Int. Load Eff, Capacitance | ~6 pF

External Digital Source [}

System Start-up Delay” ms Interrupt Enables

[oscillator Fault Interrupt Enable

** This setting uses an intemal lowfrequency
osdllator. Frequency can vary betwesn d4kHz to Generate Interrupt Handler Code
20kHz See spedific device datasheet

View All Interrupt Handlers

Note1: By enabling the interrupt handler, Grace generates a fully working interrupt service routine in InterruptVectors_init.c file
inside src folder, User could insert code inside the specified area of the ISR and the code is preserved. When a user disables
the interrupt handler, the user's inserted code remains at the bottom of the file which is automatically re-inserted if the
user re-enables the interrupt handler, User could also manually remove the code when it is no longer needed.

2 Mznual Ll iaurina the DCO freanenn: can recult in a = L 108 Asviatinn The B i NCO hasa
Grace | BCS+ SSJ

15

BCSCTLZ = SELM @ | DIVM @ |

(CALBC1_16MHZ !=

As we can see the generated code snippet sets appropriate registers as per our setup in GRACE GUI.

GRACE can be downloaded without any charge from TI’s website:
http://www.ti.com/tool/GRACE?keyMatch=grace%203&tisearch=Search-EN-Products.

16

http://www.ti.com/tool/GRACE?keyMatch=grace%203&tisearch=Search-EN-Products

We will also need a separate standalone programmer GUI tool. Why? Because it looks totally stupid
to open the heavy CCS software every time to upload a code to a new target after having built the
final code for it. For this purpose, we will need UniFlash programmer GUI.

4 Uniflash
UniFlash Session ~

R LR Gk

Ty

~ Create Session From Existing Target Configuration File

UniFlash can be downloaded from http://www.ti.com/tool/uniflash or can be accessed via Tl cloud.

Additionally, | recommend installing and using Sublime Text (https://www.sublimetext.com/3) or
Notepad++ (https://notepad-plus-plus.org/download/v7.4.2.html) as a code viewer/editor.

File Edit Selection Find View Gote Tools Project Preferences Help

main.c

<msp43@.h>

void Grace_init(veid);

Pt
1

AT

main{ void)

{
Grace_init();

Make sure you also downloaded Launchpad board drivers from here:
http://www.ti.com/lit/sw/slac524/slac524.zip.

17

http://www.ti.com/tool/uniflash
https://www.sublimetext.com/3
https://notepad-plus-plus.org/download/v7.4.2.html
http://www.ti.com/lit/sw/slac524/slac524.zip

Documents, Pages and Forums
The following documents must be acquired:

e Device Datasheet.
This write up covers MSP430G2452 and MSP430G2553 microcontrollers and so we will be
needing the datasheet of these microcontroller for technical specs and characteristics. These
can be found in the following links:
http://www.ti.com/lit/ds/symlink/msp430g2452.pdf
http://www.ti.com/lit/ds/symlink/msp430g2553.pdf

If you are using some other microcontroller then you must acquire its datasheet first.

e Reference Manual.
MSP430G2xx reference manual covers the details of all the hardware available in this family
of microcontrollers. Unlike other microcontrollers, datasheet of a MSP430 micro, only says
about technical specs and characteristics. Reference manuals say about internal hardware,
how to use them and about internal registers. This is the most important document of all.
http://www.ti.com/lit/ug/slaul44j/slaul44j.pdf

e Launchpad User Manual and Associated Files.
Visit the following link for Launchpad board user manual and other docs:
http://www.ti.com/tool/msp-exp430g2. This document not just introduces the Launchpad
board, it also contains schematics, layouts and other stuffs. Off all the stuffs in the user
manual, Launchpad board’s schematic is the most valuable thing.

e App Notes.
Though not mandatory, having a collection of MSP430 application notes is a surplus. These
show various ideas and design concepts. Visit TI’s website for these docs.

There are some important websites, online communities and forums that are very helpful. Some of
the most popular ones are:

http://www.430h.com/

http://forum.43oh.com/

https://e2e.ti.com/support/microcontrollers/msp430/

http://processors.wiki.ti.com/index.php/Main Page

http://www.ti.com/Isds/ti/microcontrollers-16-bit-32-bit/msp/overview.page

http://www.ti.com/Isds/ti/tools-software/launchpads/overview/overview.page

18

http://www.ti.com/lit/ds/symlink/msp430g2452.pdf
http://www.ti.com/lit/ds/symlink/msp430g2553.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/tool/msp-exp430g2
http://www.43oh.com/
http://forum.43oh.com/
https://e2e.ti.com/support/microcontrollers/msp430/
http://processors.wiki.ti.com/index.php/Main_Page
http://www.ti.com/lsds/ti/microcontrollers-16-bit-32-bit/msp/overview.page
http://www.ti.com/lsds/ti/tools-software/launchpads/overview/overview.page

Starting a New CCS Project

Beginning a new CCS project is not too complicated. Provided that CCS is installed in your PC, simply
run it.

b

Code
Composer...

In just a few seconds, CCS’s logo splashes.

fi} Code Composer™ Studio v7

13 TEXAS
INSTRUMENTS

You'll be asked for workspace location. Either select an existing workspace if you have one or create
a new one.

@ Eclipse Launcher

Select a directory as workspace

Code Composer Studio uses the workspace directory to store its preferences and development artifacts.

Workspace: | C\Users\SShahryiar\workspace v

~ Browse...

[] Use this as the default and do not ask again

« Recent Workspaces

workspace v7

19

Next click File >> New >> CCS Project.

% workspace v7 - CCS Edit - Code Composer Studio
File Edit View Mavigate Project Run Scripts Window Help
MNew Alt+Shift+N ») CCS Project
Open File... ™ Project...
[, Open Projects from File System... |£|<> Source File
Close Ctrl+W lﬁ' Header File
Close All Ctrl+Shift+W | (& Class c
Save Ctrl+S [File from Template m
Save As... % Folder
Save All CtrleShift+s | B Target Configuration File
Revert |z& DSP/BIOS v3.x Configuration File Li
& RTSC Configuration File N
Move...
Rename... F2 [Other.. ELEL
Refresh F5 | |
The following window will show up then:
| & New cCs Project O W
' ccs Project o]
| Create a new CCS Project. @
|
Target: | MSP430Groox Famnily ~ || MSP43062553 vl o
Connection: | T MSP430 USB1 [Default] v || Identify..
. 1 MsP430
Project name: | project_name |
Use default location
Location: | C:AUsers\SShahryiar\workspace v\project_name Browse...
Compiler version: | TIv17.3.0.5TS ~ More...
b Advanced settings
~ Project templates and examples
type filter text Creates an empty project fully initialized for

the selected device, The project will contain

— :
v li] Empty Projects an empty 'main.c’ source-file,

[Empty Project
[Empty Project (with main.c)
[Empty Assembly-only Project
[Empty RTSC Project

v [[5] Basic Examples
[& Blink The LED

I ® < Back Mext > Cancel

20

Here we just need to setup target MCU, name of the project, compiler version and project type. Keep
other options unchanged unless you are sure of your actions.

The following window appears after hitting the finish and we are good to go for coding. It is just that
simple.

& workspace w7

CS Edit - project_name/main.c - Code Composer Studio
File Edit View Mavigate Project Run Scripts

Window Help
BiR-iRidp i R [auckacees] | | [
o | B mainc 52 =B
B 1 #include <msp43@.h>

P
4 * main.c
5 */
6int main(void) {
WDOTCTL = WDTPW \ WDTHOLD;

—

// Stop watghdog timer
return @;

[Problems 52
0 items

Description

Resource Path Location Type

Writable Smart Insert 11:1

One advice | would like to give here, never delete any workspace file or folder unless you created it. It
is possible to rename and remove projects from CCS IDE.

21

GRACE

As stated earlier, GRACE is a graphical configuration tool. It reduces the effort of thoroughly reading
datasheets and reference manuals. | highly recommend using it no matter if you are novice or expert.

First run GRACE.

Wait for it to launch.

Grace - a

Fie Edt View Hep

&G

1Tl Resource Explores . =0

Addeess: -]

Meet Grace

Grace is our graphical code environment for MSP430

G Grace Examples F2ax
G Grace Exsmples G2m

With Grace, you can graphicaly configure your MSP430G2xx and MSP430F 2x: peripherals including ADCs,
timers, GP10, sefial communication & mare

Grace streamlines your
development

[Twant bo e the ADCID, =)
i R T s
p—— e Lciorria
Tmorc sk o

Enable peripherals Interactive peripheral Generates sasy-lo-
vith a single click configuration read C code
Quick Start
+ Example projects. Grace has been pre-loaded with example projects 1o help users get started quickly. Feel
free to use these as learning tools, or as a starting point for your own applications. Simply open the
Resource Explorer (via View->T] Resource Explorer)

Helpful Tips

+ Putdown felpful tooltips have into Grace, and are based on MSP430
user's guides and datasheets. Simply hover your MoUSe over various interactive elements to bring up useful
information about specific peripheral settings

+ Learn at your own pace. Single-clicking on a peripheral black brings up a useful overview page that
provides information about how that peripheral can be used and corfigured. Each peripheral avenview page
also provides links 1o helpful documentation if needed

+ Get help from the community. Join the MSP430 E2E online community and get help from experienced
users. Check the Grace VYiki for the most current documentation and FAQs.

Frequently Asked Questions

TI's Resource Explorer kicks in on first start up. It may not do so every time though.

Click File >> New to begin a new GRACE project.

Grace

File Edit View Help

£ New CtrleN
(= Open Ctrl+O
Close Crl+W
Close All Chrl+ ShiftsW Y| Topics
Save a Copy As... Address: |
Save Ctrl+S
Save All Ctrl+Shift+S
Meet Grace
Open Generated Source Folder Ctrl+F Grace is our graphical code environment for MSP430.
Exit Alt+X

With Grace, you can graphically configure your MSP430G2xx ¢
timers, GPIO, serial communication & more.

Grace streamlines your
development

22

You'll be prompted for project location, MCU part number and project name as shown below:

!Oml MNew Grace Project
I Project Mame: | test
|e n [Use Default Location
e s Location: | C:\Users\sshah'\Desktop\test Browse...
-] Auto Generate 'main.c’ Example
T Deviee: |MSPA30G2553
Tteractive
onfiguratid T o

Once all the parameter fields are filled, we are ready to configure our target MCU. A welcome screen
shows up next.

£ Tbmource e || tetal)

Grace (MSP430) - Walcoma

[rr=
Dt
Beigton Reosce Pan Lecsen

From the welcome screen, we have to click on Device Overview and get an insight of the device’s
peripherals as peripheral blocks.

Fie it Weou
iz LY
@ T Resource pores || el £3]
Grace (MSP430) - MSP430G2553
o

23

We can now click desired hardware peripheral block (blue blocks) to check what features and code
examples it offers and set it up as required. There are two types of setups for all modules - Basic and
Power users. Basic User setup is for simple setup when you don’t know everything of a peripheral in
details and don’t want to mess things up. Power User setup is for expert users with more advanced
options. Shown below are the Power User options for setting up the clock system:

Grace
Fle Ede View Help

o HR NS

£) T\ Resource Explorer | estadg £ =0
Grace (MSP430) * Clock - Power User Mode

Ovenview Basic Ut Registers -

Configure Clock Source Select Clock Source

Lo Speed Externad Clock Source |

Select Clock Source™ | 1ZkMz

xr e
16, Loag B Capcitance | <6 0
Extemal Digtal Source 1

Syntem Sat.up Detary” 8] ms Interrupt Enables.
[l @scilistor Fault interrupt Enable

Generate intermugt Handler Code

Description Resource Path Location Type

After setting up everything, just hit the hammer or Build button and the configuration codes are
generated in the preset folder. It may take some time to complete the process. Next, we just need to
open the generated files and copy them in our main CCS code.

How to create a new CCS project and use Grace is well documented in this video:
https://www.youtube.com/watch?v=QCYMbsKwRfY.

24

https://www.youtube.com/watch?v=QCYMbsKwRfY

UniFlash

Most of the times during development, a separate standalone programmer software is not a
compulsory necessity as CCS IDE provides an inbuilt programmer/debugger interface. However, at
times long after final application development, it becomes completely unnecessary to reopen CCS just
to load a firmware to a new micro. UniFlash comes in aid at that time.

Run Uniflash by clicking its icon.

/3

UniFlash

The following window appears:

4 Uniflash

UniFlash

= New Configuration

@ Choose Your Deviee

Category: All| C2000 | mmWave | MSP | PGA | Safaty | Tiva | UCD | Wirele

Q ix
@ CCI220SF-LAUNGHXL
P CC32208F LAUNCHXL

W LauncHxLcezes0
& Lo
W LAUNCHALF2
& LN
W LauNCHX

~ Create Session From Existing Target Configuration File

25

From here we need to select either target board or target microcontroller. No need to type the whole
part number of a micro, just few digits/letters are enough to find the correct micro:

~ New Configuration

@ Choose Your Device

Category: All | C2000 | mmWave | MSP | PGA | Safety | Tiva | UCD | Wireless
Q g2553| X
W MsPa3052553 on-chin

¥ Create Session From Existing Target Configuration File
m a.ccxml file to create a new session.

Similarly, we need to setup connection to target too. USB1 - the first option is what we need to select.

~ New Configuration

v X

@ selected Device: MSP43062553

o Choose Your Connection

TIMSP430 USB1
TIMSP430 USB2
TIMSP430 USB3

« Create Session From Existing Target Configuration File

a .ccxml file to create a new session.

Now we are ready to begin firmware upload. Click the Start button.

~ New Configuration

v X

@ selected Device: MSP43062553

@ selected Connection i TI MSP430 USB1

o[=]
« Create Session From Existing Target Configuration File

a .ccxml file to create a new session.

26

Browse the firmware you wish to upload.

4 uniFiash

UniFlash Session = About

Configured Device : TI MSP430 USBT » MSP43062553 [mors infs MsPa3

I Program Select and Lead Images

Settings & Utilities Flash Image(s)

emary =

Standalone Command Line

* Quick Settings

Creatie your personalize settings view. Click to add settings.

O Console X close

You can optionally set some more parameters for the target as shown:

4 Uniflash

UniFlash

Configured Device : I MSP430 USE1 > MSP43062553 Imore infol

Program Find and Configure Settings and Utilities
I Settings & Unilities I Q Search: = moreinfo | @ Pin Option
Memory

~ Download

Standalona Gommand Line

O Console X Closa

To flash new firmware, just hit the Load Image button.

Watch this video for details: https://www.youtube.com/watch?v=4uwQSSX-HrM.

27

https://www.youtube.com/watch?v=4uwQSSX-HrM

Strategies and Tactics

Before we begin exploring MSP430 micros, | would like to discuss certain things though they may look
like advanced stuffs for the moment.

Generating HEX Output Files

By default, CCS doesn’t generate any hex formatted output file. Everyone working in the embedded
system sector is familiar with it. Hex outputs are useful for Proteus VSM simulations and loading code
to a new MSP430 micro using an external programmer like UniFlash. Thus, it is essential if not
imperative to unlock hex utility.

First go to Project >> Properties.

@ waorkspace_v7 - CCS Edit - project_name/main.c - Code Composer Studio
File Edit View Mavigate Project Run Scripts Window Help
P = R v: 5§ Mew CCS Project...
@ Mew Energia Sketch...

Examples...

[main.c 2

B 1 #include <msp4!
O 2 Build Praject
3

FE

 omin [Build Al Ctrl+B

*f Build Configurations ¥

5 *
&int main(void) Build Working Set >
WDTCTL = Wl

Clean...

o oo -

return @; Build Automatically

Show Build Settings...

@
—_—

Import CCS Projects...
Import Legacy CC5v3.3 Projects...

o B

Add Files...
RTSC Tools ¥
Import Energia Sketch...

e

Import Energia Libraries...

C/C++ Index)

Properties

28

Navigate to find MSP430 Hex Utility and then enable it as shown below.

type filter text

Resource
General
~ Build

~ MSP430 Compiler
Processor Options
Optimization
Include Options
ULP Advisor
Advice Options
Predefined Symbols
Advanced Options

MSP430 Linker

v MSP430 Hex Utility
General Options
Diagnostics Options
Qutput Fermat Options
Load Image Options

Debug

® Show advanced settings

MSP430 Hex Utility F v

Configuration: | Debug [Active] ~ | | Manage Configurations...
Enable MSP430 Hex Utility
Command: [*stcG_TOOL HEXY" |
Cemmand-line pattern: | Sfcommand] §{flags} ${output flag} $output} ${inputs} ‘
Summary of flags set:

--memwidth=8 --romwidth=2

Edit Flags...

See 'General' for changing tool versions and device settings

Finally select hex output format as shown:

type filter text

Resource
General
~ Build

v MS5P430 Compiler
Processor Options
Optimization
Include Options
ULP Advisor
Advice Options
Predefined Symbels
Advanced Options

MSP430 Linker

w MSP430 Hex Lhility
General Options
Diagnastics Options
Output Format Options
Load Image Options

Debug

Output Format Options (=14 v -
Configuration: Debug [Active] ~ | Manage Configurations...
Output format ~

OutE.ut ASCIl hex format (--ascii, -a)

Qutput Motorola S hex format (--motorela, -m=1)
Qutput Motorola 5 hex format (--motorola, -m=2)
Qutput Motorola S hex format (--motorela, -m=3)
Output Extended Tektronix hex format (--tektroni, -x)
Qutput Tl-Tagged hex format (--ti_tagged, -t)

Qutput TI-TXT hex format (--ti_txt)

® Show advanced settings

Select Intel hex format as it is the one widely used.

Having set as shown, from now on, whenever you build your current project, you'll get an output .hex
file in the project’s debug/release folder depending on your project type selection.

29

Building New Libraries
Building new libraries is simple. All we need to do is to follow a few set of rules:

e For each module, there should be a separate header file and source file.

o Header file should contain definitions, variables, constants and function prototypes only.
e Header files should begin with the inclusion of MSP430 header file.

e Source files should include their respective header files and addition header files (if any).
e Source files should contain actual function codes only.

e Be aware of reserved keywords and constants.

e Global variables with same names should never be declared more than once.

e Empty functions and functions without prototypes must be avoided.

e Functions should have small and meaningful names.

e Be careful about case-senstivity, function type assignment and argument type of functions.
e Hierarchical order of library inclusion must be followed.

<msp430.h>

value);
value);

delay.c

value)
loops = ((F_CPU * value) >> 2);
(loops)

_delay cycles(1);
loops--;

(

(value)

delay us(1000);
value--;

30

Adding Custom Library Files

Adding own developed libraries to a project is key requirement for any software developer. This is
because no compiler includes libraries for all hardware. We must realize a compiler as a tool only. The
rest is how we use it and what we do with it. As for example, CCS comes with _delay_cycles instead
of more commonly preferred delay_ms or delay_us functions. We will, thus, need software delay
library. We need to code it and include it in our projects.

Custom libraries can be included in two ways. The easiest way is to add the include and source files in
your projects root location, i.e. its folder. No additional job is needed because the root contains the
main.c source file and its location is automatically included when you start a project.

Interfacing

Binaries
Includes
Debug

led.c

led.h
P Ink_mspd 32.cmd
B main.c

% lcd.pdspr

However, the aforementioned method becomes clumsy and unprofessional when there are too many
custom library files in a large project and if you care for some neatness. The other method needs some
additional tasks to be done before we can use our library files.

First make a folder in your project directory and give it a name. For example, | named this folder
Libraries in my examples.

Next add the desired library source and header files in this folder.
4 B |C)_Interfacing
b @ Includes

> i Debug
4 g Libraries

B main.c

% lcd.pdspr

31

At this stage, we still cannot use these libraries because the compiler does not know their path(s) and
so we need to inform the compiler about their location. We need to go to Project >> Properties first

and then navigate to Include Options menu under Build >> MSP430 Compiler menu as shown:

Include Options

(@I Debug [Active] ~ N Manage Configurations...

Add dir to #include search path (--include_path, -I) E R CE | |
k ASE_ROOT) 0finclude” &

"Ch\Users\55hahryiar\Desktop\M5P430 CCS Code Examples\LCD_InterfacingLibraries”
“${PROJECT_ROOT} [

"§{CG_TOOL_ROOTYinclude" [+

% Add directory path

KX T N A s

Right after clicking the circled icon as shown above, we will be asked for folder location. It is just a
simple browsing to the library folder location.

CD_Interfacing

Include Options

[--include_path, -1} 22an]
| - ROQOT]} 430/include" B
"ChUsers\SShahryiar\LCD_Interfacing!Libraries"
"S{PROJECT_ROCT}" [
"$§{CG_TOOL_ROOTYinclude" []

Specify a preinclude file (- 2EAERSa

32

To use the libraries we added, we now just need to add some #include statements in our main.c file.

B main.c X

Be careful about the hierarchial order of library files because they may be interdependent. For
example, as shown above, the LCD library has dependency on software delay library and so the delay
library is added or called before the LCD library.

Using GRACE Simply but Effectively

GRACE should be used for quick setups. Who would like to waste time fixing register values when we
have such a useful tool at our side. We will need a code viewer/editor like Sublime Text for viewing
codes generated by GRACE. | like Sublime Text for its way of highlighting keywords and important
stuffs with different colours. This helps in building quick situational awareness. A dark IDE is also good
for night-time coding and less stressful for eyes.

Previously | showed how to use GRACE to generate configuration codes. GRACE generates individual
source files for each hardware used. In this way, it doesn’t create too much mess. We will open each
of these files with Sublime Text and copy only the needed init functions in our main source code.
GRACE also generates other stuffs but that are like mere junks to us and so we will just ignore them.

GPIO_init.c BCSplus_init.c WDTplus_init.c

void GPIO graceInit(veid)
r
L

PLOUT = @3

PIDIR = BIT6 | BIT7;

P1IES

P20UT

B Line 1, Column 1

33

My code examples will give you an idea of what to copy. Keep in mind to stop the watchdog timer in
the beginning of your code or it may reset your micro before entering actual application.

Optional Customizations

Explore the IDE Preferences for customizing CCS IDE according to your wishes. For instance, unlike the
default white theme, | like a full black IDE interface like the one in Sublime Text. This is really effective
when you work at night and in low light conditions. Just like Sublime Text key words are highlighted
and it is easy to navigate in such an environment.

In a busy world, we often forget to update software in regular schedules and therefore miss important
changes and bug fixes. Automatic updates come in aid in such case. | configured my CCS in such a way
that it auto updates and notifies me about new software versions. | also added some tools from CCS/TI
App Store like the GCC compiler.

Other customizations include MSP430Ware and EnergyTrace Technology debugger. EnergyTrace
Technology allows us to compute energy consumptions. It helps in estimating battery requirements
(if any). | recommend readers to explore CCS IDE properties for more custom settings.

Advanced Concepts

Most of the times during code compilation you’ll notice that the compiler not only compiled your code
but has also given you some optional advices. These advices aid in code optimizations and hint ways
to enhance overall performance. For instance, it is better to use switch-case statements instead of if-
else statements when dealing with fixed-discrete conditions. Try to follow the advices whenever
possible. Same goes for compiler warnings. You must address the warnings for flawless coding.

In the internet, we can find lot of documents on C code optimization and good C language practices.
Here is one such document from Atmel: http://www.atmel.com/images/doc8453.pdf. Although it was
written for Atmel AVR microcontrollers but the document applies for all microcontrollers and C
compilers. Similarly, Microchip has documents named Tips ‘n Tricks. Visit and search Microchip’s site
for these documents These tricks and tips help in designs significantly. Try to follow these to achieve
best utilization of your micro’s assets. TI’s application notes are also equally helpful literatures.
Personally, | recommend studying the app notes, and other documents of other micro families too.
This will help advance in developing new concepts, strategies and techniques.

Additionally, | would like to point out some issues and techniques when using CCS. Here are followings:

e Be careful about case sensitivity. Also, be careful about compiler’s reserved keywords and
constants.

e Although not mandatory, it is, however, a good practice not to keep empty argument field in
any function. Argumentless functions should have void argument instead of empty spaces.

34

http://www.atmel.com/images/doc8453.pdf

Flags are important event markers and so wherever they are present and needed you must
use and check them unless automatically cleared. For instance, it necessary to clear timer flags
upon exiting timer interrupts.

Try to avoid polling methods. Try to use interrupt-based ones but make sure that there is no
interrupt-within-interrupt case or otherwise your code may behave erratically. Best is to
attach interrupts for important tasks like timing-related jobs, ADC conversions and
communications. It is up to your design requirements and choices.

Where fast processing is required, try to mix assembly with your C-code if you can or
temporarily speed up your micro by increasing its oscillator speed or switching to a faster clock
source. Checkout the assembly examples from TI’s Resource Explorer and MSP430Ware. Also
try to study and learn about advanced C concepts like pointer, structures, functions, etc.

Avoid empty loops and blank conditional statements.

When you hover mouse cursor over a function, a small window appears. This window shows
the internal coding of that function and relieve you from opening a new tab for it.

CTRL + Space or code assist is a great helper. Likewise, CCS has some auto complete features.

If you are using multiple computers during your project’s development stage, make sure that
your custom library locations and workspace paths are properly added.

Try to follow compiler advices and optimizations. Study the MSP430 header files if you can.

You can straight include the header file of your target MCU like as shown below if code cross
compatibility among different MCUs of the same group like MSP430x2xx is not needed:

#include <msp430g2553.h>

instead of:

#include <msp430.h>

The latter is universal for all MSP430 micros and should be used unless otherwise.

Bitwise and logic operations are useful. Not only they are fast, they just deal with the
designated bits only. Although the MSP430 header files have efficient support for such
operations, it is still better to know them. Shown below are some such common operations:

bit _val) reg [= (1 << bit_val)

bit_val) reg &= (~(1 << bit_val))
bit_val) reg "= (1 << bit_val)

bit_val) (reg & (1 << bit_val))

msk) (reg & msk)

35

Basic Clock System Plus (BCS+)

In all microcontrollers, power consumption and operating speed are interdependent and it is needed
to balance these well to maximize overall performance while conserving energy. MSP430s are crafted
with ultra-low power consumption feature in mind while not compromising performance. For this
reason, MSP430s are equipped with a number of clock sources that vary in speed, accuracy and area
of use. They also have clock dividers at various points apart from peripherals prescalers. This
combination leads to a highly flexible clock system called Basic Clock System Plus (BCS+).

Internal
BCS+ A i

Oscillatort T T

Divider
Min. Pulse| LFXT1CLK Apas ™
Filier ACLE
Aurdillary Clodk
OSCOFF LFXTiSx
KTS
| |
KM av
—1 —
LROf KT10F
¥ouT av
SE Lk
l L LFXT1 Oscillator DO
CAPY T T CPUDFF
o
01 Divider
Min . Pulse 1

) | &1 10 H2uB
Filter
: /4 | » MGLK

Connedted only when Main Sy Clock
XT2 not present on—chip

[

™
o
\/

1
T |
i — |
XT20UT ¥T2 Oscillator MOD
rreTe
VCC Modulstor <]
DCOR SCGO0 RSELx DCOx

585 DIVEx

TT sCG1

| | Divider
DCOCLK T4
SMCLE

Sub System Clock

S T T

L loco [
B Generator m+1H
Rosc

The block diagram for MSP420x2xx BCS+ module shown above highlights important components. It
looks very sophisticated but if we divide it into important sections then it becomes simple to
understand. Highlighted in green are clock sources and highlighted in purple are various clock signals
that can be used for peripherals and the CPU. Now let’s check BCS+ in short.

36

Internal Very High-
Low-Power, Low or High Frequency Digitally-
Low-Frequency Frequency Crystal Controlled

Oscillator Crystal Oscillator Oscillator Oscillator

(VLOCLK) (LEXT1CLK) (XT2CLK) (DCOCLK)
External Crystal,
Oscillator Type Inter_nal RC External Clock Vewr e 1500 Inter_nal RC
Oscillator Crystal etc Oscillator
Ceouen 32.768kHz (LF)
S 12kHz or 0.4 - 16MHz 1.0 - 16MHz
9 0.4 - 16MHz (HF)
Accuracy Very Low High High Moderate
Availability ~ New devices only All devices Not all devices All devices
HF mode is not
Most suitable available in all A key feature of
Notes clock source for devices. HF mode Optional and MSP430s that
low power can be used to accurate has a very low
modes synchronize with startup time

other devices

Auxiliary Clock Master Clock Sub-Main Clock
(ACLK) (MCLK) (SMCLK)
_

Unavailable Available

Peripherals

After having a sneak-a-peek of the MSP430’s clock system, we have to know some basic rules of using
the BCS+ module of MSP430G2xx devices:

e XT2CLK and LFXT1CLK high frequency mode are both unavailable. We can’t use them.

e DCOCLK is the most reliable clock source and should be used for both MCLK and SMCLK.

e DCOCLK is dependent on VDD and so set VDD in GRACE before trying to setup BCS+.

e Pre-calibrated DCOCLK values should be used as they offer good tolerance figures.

e Itis not wise to use custom DCOCLK values as accuracy issues surface.

e |f LFXT1CLK is used and needs precise timings, use a good clock crystal/TCXO/clock source.

e Use proper capacitance value for LFXT1CLK when an external crystal is used.

e Unused clock sources should be disabled to reduce power consumption.

e Pins that connect with external clock sources should be set as inputs if they are not used.

e Add a system start up delay of about 10 — 100ms to allow stabilization of clock sources.

e Clock outputs are available only in certain pins. If used, they are needed to be set accordingly.

e Use oscillator fault interrupt if needed. This becomes extremely necessary to ensure fail-safe
clock operation when external clock sources are used alongside internal clock sources.

e Fortime sensitive hardware like timers, try to use a reliable clock source.

e Check for warnings in GRACE.

37

Code Example

<msp430.h>

BCSplus_graceInit()
GPIO_graceInit()3
WDTplus_gracelInit()3
System_graceInit()

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

System_graceInit();

WDTplus_graceInit();

(1)
P10UT ~= BIT6;

_delay_cycles(1);
s

BCSplus_graceInit(

BCSCTL2 = SELM_@ | DIVM_1 | SELS | DIVS_3;

(CALBC1_1MHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S_© | LFXT1S_2 | XCAP_1;

GPIO_gracelInit(

9;

BITO | BIT4;

BITO | BIT4 | BITs;

9;

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

System_graceInit(

IFG1 &= ~OFIFG;

__delay_cycles(25);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

Simulation

Digital Oscilloscope

Channel C
Level ’7 Poaition [Position

Chamnnel B
Position

Position

Explanation

The demo example here is primarily used to extract SMCLK and ACLK signals. Here we just verified if
these signals are as they are supposed to be. Using GRACE, we set MCLK 500 kHz, SMCLK 1500 Hz and
ACLK 12 kHz. Clock outputs are obtained from respective pins as shown in the snap. The only thing
additional here (not shown) is the P1.6 digital I/O. In the code, this I/O is toggled every one CPU cycle.
It is not an indicator of CPU clock speed but just a test of I/0 toggling speed for. MCLK has no output
associated with it and so we can’t see its signal.

41

One major thing to note is the power supply voltage level. This is so because DCOCLK is dependent on
VDD level. For low VDD voltages, high frequency oscillation generation is not possible. We have to
remember that MSP430s are energy efficient devices and so there is always a trade-off between
operating frequency and operating power consumption.

Another odd but important thing you may notice is the fact that the VDD value in MSP430 Launchpads
is 3.6V instead of the more commonly used 3.3V. This is the maximum recommended VDD value
although MSP430s can tolerate voltages up to 4.0V.

Configure Clock Source

Internal High Speed Clock Source

Internal DCO™ 1000.0 kHz
Precalibrated DCO Yalues |1 MHz
Disable DCO O

Low Speed External Clock Source 1

Select Clock Source™ 12 kHz w
¥T1 12.0 | kH=z
Int. Load Eff. Capacitance ~& pF

External Digital Source D

System Start-up Delay”

100.0 | ms

Select Clock Source

Clock Source Drivider Main System Clock (MCLK)
— DCOCLK ~ Divide by 2 500 kHz

Output MCLK Ma MCLK Pins

Clock Socurce Drivider Sub System Clock (SMICLK)
— LFXTCLE ~ Divide by 8 1.5 kHz
Cutput SMCLK P1.4/SMCLK i

Clock Source from Divider Auxiiary Clock (ACLK)
Low Speed External = 15 kH
Clock Source 1 Divide by 8 ~ . z

Output ACLK P1.O/ACLK ~

Interrupt Enables
|:| Oscillator Fault Interrupt Enable

Oscillators may show deviations in frequency due to changes in ambient temperature conditions. This
in turn may affect communication and timing-related tasks.

42

B 12,21 khz B 49,54 %

tei— W 16 us I

= Capture

Demo video: https://www.youtube.com/watch?v=gHDibVxfegU.

43

https://www.youtube.com/watch?v=gHDibVxfegU

Digital I/Os (DIO)

MSP430s, just like any micro, have digital 1/Os for general-purpose input-output operations. The
resources and features of MSP430 digital I/Os are very rich and more or less comparable to a typical
ARM microcontroller. All I/O can be independently programmed. Many 1/Os have external interrupt
feature. Another cool feature is the availability of both internal pull-up and pull-down resistors for all
I/Os and they can be individually and independently set. Additionally, many 1/Os have alternate roles
for communication buses, clock, etc. However, the digital I/Os are not 5V tolerant and we must be
careful interfacing external devices with our MSP430 chips. | strongly recommend using some form of
logic-level conversion circuitry in such cases.

PxSEL.y

PxDIR.y II o Direction
1 0: Input
1: Output o
PxSELZY m—

)
PxSELy m— O} J

PxREN.y B— o

PxOUTy B =
=t
ﬂ) ’—-
o Px
ThAwy
ThxCLK % @
PxlN.y - .
Ta Module -1-—! <] n!
PxIEy
PelROy -4 ER
Q
] Set
PxIFG.y
P
P«S5EL.y m——§ Interrupt
Edge
PxIESy m——— 8 Sealect
N

Typically, there are four major components in a digital /0 as highlighted in the block diagram above.
The yellow region is responsible for setting I/O properties, the light blue area is dedicated for output
functionalities, the orange area for inputs and external interrupts, the pink zone for internal pull
resistors and finally the red area signifying the presence of a Schmitt trigger input stage which is very
useful for noisy environments.

44

Code Example

<msp430g2452.h>

GPIO_graceInit()5

BCSplus_graceInit();
WDTplus_graceInit();
System_graceInit();

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

System_graceInit();

WDTplus_graceInit();
G3)

((P1IN & BIT3) == IBIT3)
{
P1OUT |= BITO;
_delay_cycles(40000);
P1OUT &= ~BITO;

}

P10OUT ~= BIT6;
_delay_cycles(30000);

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS 0;

(CALBC1_1MHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_G;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

GPIO_gracelInit(

BIT3;

BITe | BIT6;

BIT3;

9;

System_graceInit(

IFG1 &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

Simulation

=
i a
73 w
| &
= =
g | U1
| |
LED_GREEN O—g_ F1OTADCLKIACLKIADICAD PZ.0 —g
== P1TADDATCAT P21 ==

=

[]
%{ P11 2TAD 1/AZICAZ P22

BUTTON O_Sl P1.HADC10CLK/ICACUT/ASNREF-WVEREF-ICAZ P23
£ P1_4TAD2ISMCLKIA4NWREF+WEREFHCA4TCK P24

-y

[

R2

=

220R Tam| F1-5TAQ.QISCLKIASICASTMS P25 [0
LED_RED W P1.BITAD. 1/SDO/SCUABICANTOITCLK XINF2 BTAC 1 [S==
<5=] PL7/SDUSDAIATICATITDOITDI XOUTIP27 [o==
RST {O—— RET/NMUSBWTDIO TEST/SBWTCK [—
D2 MSP430G24562

LED-RED

Explanation

The most classical “Hello World” demo for digital I/Os is blinking a LED. Here | demonstrated the same
but with some minor differences. Here Launchpad board’s user button and LEDs are used. LED
connected to P1.6 blinks continuously while P1.0 LED blinks only when the user button is pressed,
slowing down P1.6 LED’s blink rate. Note _delay_cycles were used to create software delays.

At this stage | must point out, some basic rules that we must follow when we use digital I/Os of
MSP430s:

e Unused I/Os should be declared as inputs or they should be externally pulled to VDD/VSS.

48

e Unused digital I/Os can be left unconnected and floating although it is not wise to do so.

e The same applies for oscillator pins. By default, GRACE treats them as oscillator pins.

e |/Os are not 5V tolerant. Some sort of mechanism must be applied when using 5V devices.
e Most I/Os have more than one function and so be aware of conflicts.

e When driving large loads with I/0, use external components like BJTs, FETs, drivers, etc.

e When using GRACE, be sure of the IC package you are using.

e When external pull resistor is present, do not use the internal ones and vice versa.

e Explore your device’s datasheet for I/O features and limits although most are common.

= GPIO Function = Output State = Pull-Up/Down Resistor Enable Interrupt Enable

¥ Disabled

P1.0 ¥ GPIQ Output ¥ Qutput Set Low (Default) ¥ Disabled d
tput Set Low (Default Disabled ¥ Disabled

P11 ¥ GPIO Input
ovee]

Default - Disabled - Disabled PI0 Output = P1O[]
 Pull-Up Resistar ¥ Disabled GPIO Input ¥ P1.1 [T] {bnm 18[T] P27 ¥ XOUT
GPIO Input ¥ P1.2 [T INSTRUMENTS 4 7 IT] TEST/SBWTCK

10 20[T] DVSS
2
3
4
GPIOInput ¥ P1.3[I]5 MSP430G2452 16 [T] RSTINMUISBWTDIO
6
7
8
g
1

GPIO Input
Pz ey 19T P26+ XIN

P13 ¥ GPIO Input

P14 ¥ GPIO Input Default] Disabled w Disabled

ow (Defau - Disabled Disabled GPIO Input ¥ P1.4 [[] 15 [T P1.7 ¥ GPIO Input
14 [T] P1.6 ¥ GPIO Output
13[T] P2.5 ¥ GPIO Input
12[T] P24 ¥ GPIO Input

P15 ¥ GPIO Input
P16 ¥ GPIO Output

Qutput Set Low (Default) ¥ Disabled w Disabled GPIO Input + P15 []]
P1.7 ¥ GPIO Input O S D

GPIO Input ¥ P20]

ow (Default] T Disabled ¥ Disabled
GPIO Input * P24 m

4 4 4 4 4 4 4 4 4

& v XIN ¥ Disabled ¥ Disabled
P26 GPIO Input ¥ p2.2[] 10 11 [T] P2.3% GPIO Input
p2.7 ¥ XOUT ow (Default] ¥ Disabled ¥ Disabled

UL T VY T
"l i

@) £'7d
au Z'Td
® claen 11g -

‘(1

=

e o

~

r=
o
g
=
n
-
hy
a

6 &

Demo video: https://www.youtube.com/watch?v=fWINiEZk4iM.

49

https://www.youtube.com/watch?v=fWlNiEZk4iM

External Interrupts (EXTI)

External interrupt is an extended feature of digital I/Os in input mode. External interrupts make a
micro to respond instantly to changes done on it digital input pin(s) by an external event(s)/trigger(s),
skipping other tasks. Such interrupts are useful in a wide variety of applications. In case of low power
energy efficient micros like the MSP430s, interrupts as such can be used to bring a micro out of sleep
mode. In other words, an external interrupt acts like a wakeup call. For example, it is extremely
important to conserve very limited battery energy in a TV remote controller while at the same time it
is also necessary to keep it completely responsive to button presses. Thus, we need to put its host
micro in sleep mode when we are not using it and make it respond to button presses immediately
when any button is pressed. A MSP430 micro in sleep/idle mode consumes literally no energy at all

and that is why they are the best micros for battery-backed low power applications.

SYSTEM WORD
INTERRUPT SOURCE INTERRUPT FLAG INTERRUPT ADDRESS PRICRITY
Power-Up PORIFG
External Reset STIFG
Watchdog Timers WOTIFG Reset OFFFEh 31, highest
Flash key violation KEYWE
P Dut—n‘f-range': !
MM NMIIFG {nonj-maskable
Oscillator fault QFIFGE_ {non}-maskable OFFFGh 30
Flash memory access violation ACCVIFG B3 {nonj-maskable
Timer1_A3 TA1GCRO GCIFG & maskable OFFFAh 29
Timer1_A3 TA1GCR2 TA1CGR1 GGIFG, ~
TalFG @4 maskable OFFF8h 28
Comparator_A+ calFa maskable OFFF&h 27
Watchdog Timers WOTIFG maskable OFFF4h 26
Timerd_A3 TADGCRO GCIFG & maskable OFFF2h 25
1 oy
Timer_A3 TADGGR2 T.»!-.DC-:%‘.;IEE GCIFG, TAIFG maskable — 24
USCI_ANUSCI_B0 receive UCADRXIFG, UCBOAXIFGEIE
USCI_BO I2G status maskable OFFEER 23
- = _ 12108}
USCI_AQUSGI_BO transmit UCAOTXIFG, UCBOTXIFG maskable OFEEGH a3
SCI_BO 12C receive/transmit
ADGC10 ADC10IFG
(MSP430G2x53 anly) maskable OFFEAR 1
OFFEBh 20
140 Port P2 (up to eight flags) F2IFG.0 ta P2IFG 71214 maskable OFFERh 19
10 Port P1 [up to eight flags) F1IFG.D to P1IFG.TIEIE maskable OFFE4h 18
OFFEZh 17
OFFEDA 16
See 1 OFFDOEh 15
coo 18
See OFFDEh to
OFFCOR 14 to 0, lowest

Fortunately for us, most MSP430G2xx digital I/Os have external interrupt handling capability —a much
desired feature. Shown above is the interrupt map for MSP430G2553. Note external interrupts are
maskable interrupts and have low priority compares to other interrupts. We must consider this fact
when coding a multi-interrupt-based application.

50

Code Example

<MSP430G2452.h>

state = 0x00;

BCSplus_graceInit()
GPIO_graceInit()5

System_graceInit ()5
WDTplus_graceInit();

vector=PORT1_VECTOR
PORT1_ISR_HOOK(

= ~state;
~= BITO;
0x00;

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_gracelInit();

System_graceInit();

WDTplus_graceInit();

P10UT ~= BIT6;
(state)

_delay_cycles(60000);

_delay_cycles(30000);

(1);

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_1IMHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

GPIO_gracelInit(

9;

BITO | BIT6;

BIT3;

&= ~(BIT6 | BIT7);

9;

System_graceInit(

IFG1l &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_gracelInit(

DTPW | WDTHOLD;

Simulation

=
[Th}
g i U1
DC| @\ 2m 8
a o LED_RED 0—3_ P1.0/TAOCLK/ACLK/ADICAD P20 [o=—
4 u == P1-VTAO.0/AT/CAT P21 ==
=1 P1-2/TA0.A2(CA2 P22 [0
BUTTON O_s- P1.3/ADC10CLKICAOUT/A3/VREF-VEREF-/CA3 P2.3 [—=
—o| P1.4/TA0.2/SMCLKIA4/VREF+VEREF +/CA4/TCK P2.4 [—==
= P1-5/TAO.0/SCLKIASICASITMS P25 [—=
R1 LED_GREEN () == P1.6/TAD.1/SDO/SCLIAG/CAGITDITCLKXINP2.6/TA.1 [—==
o= PL/SDUSDA/ATICAT/TDO/TDI XOUT/P2.7 ==
220R RST O RST/NMI/SBWTDIO TEST/SBWTCK |——

MSP430G2452

D1
LED-GREEN

54

Explanation

The basic theme and the hardware setup for this demo is same as that of the previous one. The only
difference is the Launchpad user button. Rather than using polling method, external interrupt method
is used. When P1.3 detects a falling edge, P1.0’s state is altered while P1.6 toggles independently in
the main loop, denoting two separate independent processes at work simultaneously. Every external
interrupt changes the toggle speed of P1.6 LED.

~ GPIO Function ~ Output State ~ Pull-Up/Down Resistor Enable = Interrupt Enable
P10 ¥ GPIO Output ~ Qutput Set Low (Default) ¥ Disablec Disabled
P11 ¥ GPIO Input - Qu D ~ Disabled = Disabled ovee 1 O 20T ovss
P12 ~ GPIO Input - Qutpu ~ Disabled ~ Disabled GPIO Qutput ™ P1.O[]] 2 1911 P2.6 ¥ GPIO Input
)) GPIOInput ¥ P11 [T} 3 Texas 18] P2.7 ¥ GPIO Input
P13 ¥ GPIO Input = Disabled = Intermupt nabled Falling Edge o 1o+ o1 o 1l 4 WpTews e 17 [T TESTISAWTCK
P14 ¥ GPIO Input - Qu ~ Disabled « Disabled GPIOInput ¥ P13 [[]5 MSP430G2452 16 [I] RSTNMISBATDIO
P15 = GRIC Input , + Disabled + Disabled GPIO Input ¥ P1.4 [T 6 15[P1.7 ¥ GPIO Input
R R GPIQInput ¥ P1.5[T] 7 14 [T] P1.6 ™ GPIO Qutput
P1.6 ~ GPIO Qutput ~ Qutput Set Low [Default) ~ Disabled Disabled GPIC Input ~ p2.q [T] 8 13 P25~ GPIO Input
P17 ¥ GPIO Input 0 ~ Disabled Disabled GPIC Input ~ P21 [T 8 12T P24+ GPIO Input
P26 ¥ GPIO Input - Ou + Disabled = Disabled GRICQ Input ¥ p2.2T] 10 1[0 P23~ GRIO Input
P27 ¥ GPIO Input ~ Disabled = Disabled

Demo

1 2 TR

s
(Z5) E'Td=T

L]
Wit N T -

i T
) &'1d
I ciowm Z 14

b
b

i e ;i:"”i" '

W o I !

=

=Z

P ©

. i) 1. - e

- o ! T

- PBdysunp]

L T

ERD

%d (2

Demo video: https://www.youtube.com/watch?v=LITvj-CSiBE.

55

https://www.youtube.com/watch?v=LlTvj-CSiBE

Alphanumeric LCD

Alphanumeric LCDs are popular for projecting data and information quickly and efficiently. To use
them, we do not need any additional hardware feature in a micro. Digital I/Os are what we need to
use these displays.

Usually to use these LCDs we need 5V power supply. 3.3V versions of these LCD are rare on the other
hand. It is, however, possible to power up 5V version LCDs with 5V supply while using 3.3V logic for
communication. In TTL logic, something above 2.8V is just above the minimum allowed logic high
voltage. When VDD is less than 3V, it, then, becomes necessary to use logic level conversion circuitry.
Here in my demo | used a 3.3V version LCD to keep things simple and tidy. Shown below are LCDs for
different voltage levels. Both LCDs look same but if you check the backside of both LCDs you’ll notice
a difference. In the 3.3V version LCD, there are some additional components present, notably an 8 pin
SMD IC. This is a ICL7660 negative voltage generator IC.

- KCALD?T™ BDADSDZ DI DO ERWRSVOVDN ™ 3
o . | -

=320

56

Similarly, alphanumeric

LCDs also have operating frequency limit. Usually it is about 250 kHz. Refer to the datasheet of the
LCD you are using. If the digital I/Os are faster than this max limit value, it is highly likely that the LCD
won’t show any valid data at all or it will show up garbage characters. To counter this issue, either we
have to use a low MCU clock frequency or add some delays in our LCD library to slow the processes
down.

Software delays are often required to introduce time delays in a code. Such delays will be needed for
the LCD library. As discussed before by default, CCS doesn’t provide delay time functions i.e. delay
milliseconds (delay_ms) and delay micro-seconds (delay_us). Instead it provides _delay_cycles
function for delays. Most of us will not be comfortable with delay cycles function as it doesn’t directly
signify the amount of time wasted. Thus, delay time functions are musts. Although software delays
are inefficient in terms of coding and performance, they are helpful in debugging stuffs quickly in a
rudimentary fashion. A much novel and precise approach of creating time delays is achieved using a
timer. In this example, we will need both LCD and delay libraries. | already showed how to incorporate
custom libraries in a CCS Project and here | implemented that addition.

There are other types of displays in the realm of LCDs. These include monochrome graphical LCDs, TFT
LCDs, OLED LCDs, etc. However, it is literally impossible to integrate these displays with MSP430G2xx
micros. Firstly, this is so due to low memories and secondly due to low pin counts. MSP430G2xx micros
are also not as fast as ARM micros. Speed plays a vital role in processing graphics.

l1craofrena

MicraHrena

i
8
2
P
2?
o~

%
2
4
o
o
™
©
o
> a
a
>0

httrs: - uwww. facebook . comMicrofrena

57

Code Example

delay.h

<msp430.h>

F_CPU

delay_us(value);
delay_ms(value);

delay.c

"delay.h"

delay_us(value)
loops =
(loops)
_delay_cycles(1);

loops--;

}s

delay ms(
(value)

delay_us(1000);
value--;

led.h

<msp430.h>
<delay.h>

LCD_PORT

LCD_RS
LCD_EN
LCD_DB4
LCD_DB5
LCD_DB6
LCD_DB7

LCD_RS_HIGH

((F_CPU * value) >> 2) ;

BIToO
BIT1
BIT2
BIT3
BIT4
BITS

LCD_PORT |= LCD_RS

58

LCD_RS_LOW LCD_PORT &= ~LCD_RS

LCD_EN_HIGH LCD_PORT LCD_EN
LCD_EN_LOW LCD_PORT &= ~LCD_EN

LCD_DB4_HIGH LCD_PORT |= LCD_DB4
LCD_DB4_LOW LCD_PORT &= ~LCD_DB4

LCD_DB5_HIGH LCD_PORT |= LCD_DB5
LCD_DB5_LOW LCD_PORT &= ~LCD_DB5

LCD_DB6_HIGH LCD_PORT LCD_DB6
LCD_DB6_LOW LCD_PORT &= ~LCD_DB6

LCD_DB7_HIGH LCD_PORT LCD_DB7
LCD_DB7_LOW LCD_PORT &= ~LCD_DB7

clear_display oxe1
goto_home 0x02

cursor_direction_inc (ox04
cursor_direction_dec (ox04
display_shift (oxo4
display _no_shift (oxo4

display on (oxe8
display off (oxe8
cursor_on (oxe8
cursor_off (oxe8
blink_on (oxe8
blink_off (oxe8

_8 pin_interface (ox20
_4 pin_interface (ox20
_2_row_display (ox20
_1 row_display (ox20
_5x10_dots (ox20
_5x7_dots (ox20

DAT 1
CMD 0

LCD_init()

LCD_send(value,

LCD_4bit_send(lcd_data);

LCD_putstr(*1cd_string);

LCD_putchar(char_data);

LCD_clear_home()

LCD_goto(X_pos,

toggle_EN_pin()

toggle_io(lcd_data,
pin_num);

"lcd.h"

LCD_init()
LCD_PORT |= (LCD RS | LCD_EN | LCD DB4 | LCD DB5 | LCD _DB6 | LCD _DB7);
delay ms(20);
toggle EN_pin();
LCD_RS_LOW;
LCD_DB7_LOW;
LCD_DB6_LOW;
LCD_DB5_HIGH;
LCD_DB4 HIGH;
toggle_EN_pin();
LCD_DB7_LOW;
LCD_DB6_LOW;
LCD_DB5_HIGH;
LCD_DB4_HIGH;
toggle_EN_pin();
LCD_DB7_LOW;
LCD_DB6_LOW;
LCD_DB5_HIGH;
LCD_DB4 HIGH;
toggle_EN_pin();
LCD_DB7_LOW;
LCD_DB6_LOW;
LCD_DB5_HIGH;
LCD_DB4_LOW;
toggle_EN_pin();
LCD_send((_4 pin_interface | _2 row _display | _5x7 _dots), CMD);
LCD_send((display on | cursor_off | blink_off), CMD);

LCD_send(clear_display, CMD);
LCD_send((cursor_direction_inc | display no_shift), CMD);

LCD_send(
(mode)

DAT:

LCD_RS_HIGH;

)

CMD:

LCD_RS_LOW;

B

}

LCD_4bit_send(value);

LCD_4bit_send(lcd _data)
toggle_io(lcd _data, LCD_DB7);
toggle_io(lcd _data, LCD_DB6);
toggle_io(lcd data, LCD_DB5);
toggle_io(lcd data, LCD _DB4);
toggle_EN_pin();
toggle_io(lcd_data, LCD DB7);
toggle_io(lcd_data, LCD_DB6);
toggle_io(lcd _data, LCD_DB5);
toggle_io(lcd _data, LCD_DB4);

toggle_EN_pin();

LCD_putstr(*1lcd_string)

LCD_send(*1cd_string++, DAT);
(*lcd_string != '\0');

LCD_putchar(char_data)

LCD_send(char_data, DAT);

LCD_clear_home()

LCD_send(clear_display, CMD);
LCD_send(goto_home, CMD);

LCD_goto(

(y_pos == 0)

LCD_send((0x80 | x_pos), CMD);

LCD_send((0x80 | ox40 | x_pos), CMD);

toggle EN_pin(

LCD_EN_HIGH;
delay ms(2);
LCD_EN_LOW;
delay ms(2);

toggle_io(lcd_data,
pin_num)
{
temp = 0x00;
temp = (0x01 & (lcd data >> bit pos));

(temp)
0:

LCD_PORT &= ~pin_num;

)

LCD_PORT |= pin_num;

)

<msp430.h>
"delay.h"
"lcd.h"

GPIO_graceInit(
BCSplus_graceInit(
System_graceInit(
WDTplus_graceInit(

main(
s = 0;

txt1[] = {"MICROARENA"};
txt2[] {"SShahryiar"};
txt3[] = {"MSP-EXP430G2"};
txt4[] = {"Launchpad!"};

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

System_graceInit();

WDTplus_graceInit();
LCD_init();
LCD_clear_home();
LCD_goto(3, 0);
LCD_putstr(txtl);
LCD_goto(3, 1);
LCD_putstr(txt2);
delay_ms(2600);
LCD_clear_home();

(s = 0; s < 12; s++)
LCD_goto((2 + s), 0);
LCD_putchar(txt3[s]);
delay ms(90);

= 0; s < 10; s++)
LCD_goto((3 + s), 1);

LCD_putchar(txt4[s]);
delay_ms(90);

GPIO_graceInit(

9;

&= ~(BIT6 | BIT7);

BITO | BIT1 | BIT2 | BIT3 | BIT4

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_© | DIVS_®;

(CALBC1_8MHZ != OxFF) {

__delay_cycles(100000);

DCOCTL = 0x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S_@ | LFXT1S_@ | XCAP_1;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_graceInit(

= WDTPW | WDTHOLD;

Simulation
LCD1
LMO16L
NSFP-EXF43052
Launchrad!
z AEH 08, acnasaon
H.:J B >>> o w coocoooo
o 74
@' @' U1 ’H"l
LED_GREEN O—i: P1.0TAOCLKIACLKIANGAD F2.0 :g
P1.1/TAD.QIATICAT P21 10
P1.2ITAD 1/A2/ICAZ P22 11

=
R2 BUTTOMN O_ﬁ- P1.3/ADC10CLK/ICAOUT/AZNVREF-WVEREF-/CAZ P23 =
0 F1.4TAD 2ISMCLKIA4VREF+IVEREF+/CA4TCK F2.4 [
Tam| F1-5TACQSCLIKIASICARTMS P2.5
LED_RED Oﬁ F1.8TAD. 1ISDO/SCLAGICABTOITCLK XINF2.6TAD.1
—=—1 F1 7/SDISDAATICATTDOTDI XOUT/P2.7

| —
rsT O—2°] RETNMESEWTDIO TESTISBWTGCHK [——
D2 MSP430G2452

Z20R

Explanation

Hardly there is a thing to explain here. However, there are a few things to note. After having decided
the CPU clock frequency, we must edit the following line of the delay header file to make our delays
work as much as accurate as possible:

8 //CPU Clock in MHz

Software delays are not 100% accurate since they employ wasteful loops of delay cycles which in turn
add extra CPU cycles. They are always somewhat close to the actual required value. Delays are also
dependent on oscillator accuracy.

oveo M1 O 20 [[) bvss

GPIC Input * P1.0[T] 2 19110 P26+ GPIO Input

GPIC Input * P1.1[T] 3 i3 TEwAs 180 P2.7 ¥ GPIO Input

GPIO Input ¥ p1.2[T] 4 INSTRUMENTS 17 IT] TESTISBWTCK

GPIOInput ¥ P1.3[I]15 MSP430G2452 16 [I] RST/INMISBWTDIO

GPIC Input ¥ P1.4 [T] 6 15[P1.7 ¥ GPIO Input

GRIC Input ¥ P15 7 14 []] P1.6 ¥ GPIQ Input
GPIO Cutput * P20 Ile 13[]J P25~ GPIO Qutput
GPIC Qutput ¥ P21 [T] 9 12[T] P2.4 ¥ GPIQ Qutput
GPIC Qutput ¥ p2. 2 [T} 10 11 [I] P2.3+ GPIO Qutput

Though it is not mandatory but | still recommend that we try to use digital I/Os that have no or least
alternate functionalities. This will ensure maximum utilization of limited resources and avoid conflicts
as well. Here in this demo, | used P2 port just for that.

Choosing the right display for a project is often tedious. We have lot of options nowadays ranging from
simple LED displays to TFT LCDs. However, considering low power consumption and limited resource
availability, it wise to use the simplest form of display. If a project can be completed using seven
segment displays, it wasteful and expensive to use a OLED display with seven segment fonts.

LCD displays host their own set of electronics and are prone to Electromagnetic Interference (EMI)
and related issues. In many cases, one may end up having a EMI troubled LCD while having the host
MCU fully functional and vice-versa. It is always wise to use a short path between a LCD and its host
MCU. If needed, use passive low pass antialiasing filters.

67

I i = i L
- 2

- Hif- T T T i
- .__.Irll-. ___,|r|l'-'

MSP-EXP436G2
LaunchrFad!

Demo video: https://www.youtube.com/watch?v=sJF80JPul8s.

68

https://www.youtube.com/watch?v=sJF8oJPu18s

Low Power Modes (LPM)

From the smart watches in our wrists to the vehicles we use for transportation, many modern
electronic gadgets and gizmos are battery-powered. Some are even dependent on renewable energy
sources like solar energy. In such devices, there is always an inherent energy crisis and so saving energy
is a must in such designs for prolonged usage. At present there is hardly any microcontroller in the
market that does not come equipped with energy-saving schemes or low power modes of operation.
MSP430s were mainly designed for battery-backed instruments and it is no surprise that they come
loaded with the some of the best possible energy-saving mechanisms.

There six modes of operation of which five are low power modes. These are as follows:

SCG1 SCGOo OSCOFF CPUOFF Mode CPU and Clocks Status
0 0 0 0 Active CPU is active, all enabled clocks are active
0 0 0 1 LPMO CPU, MCLK are disabled, SMCLK, ACLK are active
CPU, MCLK are disabled. DCO and DC generator are
0 1 0 1 LPM1 disgbled if the DCO is not used for SMCLK. ACLK is
active.

GPU, MCLK, SMCLK, DCO are disabled. DC generator

1 0 0 1 LPM2 remains enabled. ACLK is active.

CPU, MCLK, SMCLK, DCO are disabled. DC generator
1 1 0 1 LPM3 | disabled. ACLK is active.
1 1 1 1 LPM4 CPU and all clocks disahled

Of these six modes, three modes are mostly used — Active Mode (AM), LPMO and LPM3. In Active
Mode, the typical self-consumption of a MSP430 device is roughly about 300pA with nothing
connected to it. In LPMO the self-consumption is about a third of active mode while in LPM3, this
consumption is just about 1pA. These figures tell us how much energy efficient MSP430s are.

Entering and exiting LPM is easy in terms of coding. However, the most common question that coders
face with LPMs is how to get back to active mode or some other low power mode from a given low
power mode. Well, it is pretty simple and it is accomplished with interrupts. It is up to coders to decide
how to manage interrupts, clock sources and what do to after waking up from a LPM condition. Note
that in LPMs, the CPU is disabled and so any task that requires CPU’s intervention is stalled. Since the
CPU and some clocks are halted in LPMs, don’t even think that the tasks depending on them will be
magically done. For instance, if a code has entered LPM3 and a timer is being driven with SMCLK, we
should not expect it to tick because in LPM3, SMCLK is turned off. Organizing the code in a decent and
well-planned manner is the secret behind successfully implementing LPMs.

Code Example

<msp430.h>
"delay.h"

GPIO_graceInit();

BCSplus_graceInit()
System_graceInit()
WDTplus_gracelInit()

69

vector = PORT1_VECTOR
PORT1_ISR_HOOK (

LPM2_EXIT;

P10UT |= BIT6;
P1IFG = 0x00;

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

System_graceInit();

WDTplus_graceInit();
(1)
(s = 0; s < 9; s++)

P10OUT ~= BITO;
delay_ms(160);

}

P1OUT &= ~BIT6;
LPM2;

}s

GPIO_graceInit(

BIT3;

BITO | BIT6;

BIT3;

&= ~(BIT6 | BIT7);

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_@ | DIVS_@;

(CALBC1_1MHZ != OxFF)

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA o;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

System_graceInit(

IFG1l &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

Simulation
é o U1

= & RsT O% BET/NMISBWTDIO P1.0TAOCLKIACLKIAQ/CAD :_,2,3—0 LED_RED

o 3 A1~ TESTISBWTCK P1.1/TA0 O/UCAORXDIUCAOSOMIATICAT |3~

o w P1.2ITA0 1/UCATXDIUCAOSIMOIA2ICA2 f=4-
P1 YADC10CL KICAOUTVREF-IVEREFJA3ICA3 [Z2——() BUTTON

P1.4/SMCLK/UCBOSTE/UCAOCLKIVREF+VEREF+/A4ICAUTCK [=8—

P1.5/TA0.0/UCBOCLK/UCAOSTE/ASICASTMS [~

P1.6/TAQ.1/UCBOSOMVUCBOSCLAG/CAGITDIMCLK [-14——0 LED GREEN

RD P1.7/CAOUT/UCBOSIMO/UCBOSDA/ATICAT/TDO/TDI |t

20R P2.0/TA1D —‘;

P21 P~

& P2.2TA1.1 %

P23A10 1L

P2.4MTA12 2

D2 P2.5TA1.2 %

LED-RED XINP2.6TADA ===

XOUT/P2.7 |—&

MSP430G2553

The simulation log of Proteus shown below shows when the internal oscillators started and stopped.

These indicate LPM and AM states.

73

Simulation Log x

Meszage Source Time 2
* PC=00000. [M5P430 CLOCK] Clock. source DCOD stop U1 MCUCORE

* PC=040000. [M5P430 CLOCK] Clock source LEXT1 stop U1 MCUCORE

* PC=040000. [M5P430 CLOCK] Clock source T2 stop U1 MCUCORE

* PC=040000. [MS5SP430 CLOCK] Clock, source DCO stop U1 MCUEORE

* PC=040000. [MSP430 CLOCK] Clock source LFXT1 stop U1 MCUEORE

* PC=040000. [MSP430 CLOCK] Clock source T2 stop U1 MCUCORE

* PC=00000. [M5P430 CLOCK] Clock. source DCO start U1 MCUCORE 0.000006000s
* PC=00000. [M5P430 CLOCK] DCO frequency = 0.08 MHz U1 MCUCORE 0.000006000s
* PC=040000. [MS5P430 CLOCK] Clock source LEAT1 start U1 MCUCORE 0.000006000s
* PC=040000. [MSP430 CLOCK] Clock source T2 start U1 MCUEORE 00000080008
*F‘E=M. [M5P430 CLOCK]MOD =0,0CO =0, 5EL =7 U1 MCUEORE 000007 4208
* PC=04C08E. [MSP430 CLOCK] DCO frequency = 0.91 MHz U1 MCUCORE 0.000014208s
* PC=04CO8E. [M5F430 CLOCK] Clock source DCO stop U1 MCUCORE 0.000014208s
* PC=04CO8E. [M5F430 CLOCK] Clock source DCO start U1 MCUCORE 0.000014208s
* PC=04CO8E. [MSP430 CLOCK] DCO frequency = 0.91 MHz U1 MCUEORE 0.00001 4208
* PC=04C08C, [M5P430 CLOCK] MOD =0, DC0 =1, 5EL =7 U1 MCUEORE 000007 4708
* PC=04C08C, [M5P430 CLOCK] DCO frequency = 0.95 MHz U1 MCUEORE 000007 4708
* PC=04CO8C. [M5P430 CLOCK] Clack source DCO stop U1 MCUCORE 0.000014708s
* PC=04CO8C. [M5P430 CLOCK] Clack. source DCO start U1 MCUCORE 0.000014708s
* PC=04COBC. [M5P430 CLOCK] DCO frequency = 0.99 MHz U1 MCUCORE 0.000014708s
* PC=04C092, [M5SF430 CLOCK] Clock source #T2 stop U1 MCUEORE 0000015208
* PC=04C098. [MS5SP430 CLOCK] Clock source LEXT1 stop U1 MCUEORE 0000015625
* PC=04C098. [M5FP430 CLOCK] Clock source VLD start U1 MCUEORE 0000015625
*’ PC=04CO3E. [M5P430 INTERRUPT] Handling IRO_PORTI, address=0-COCA. U1 MCUCORE 0.B98721864s
*PE=DHEDSE. [M5P430 INTERRUPT] IRO_PORT complated. U1 MCUCORE 0B98723531s
* PC=04CO3E. [M5P430 INTERRUPT] Handling IRO_PORTI, address=0-COCA. U1 MCUCORE 00:00:01.282947
*PE=DHCD3E. [MSP430 INTERRUPT]IRG_PORTT completed. U1 MCUEORE 00:00:01.232543 W
Explanation

This is a pretty straight example. The code here works by first flashing the Launchpad board’s red LED
for some time. During this time the MSP430 is running in active mode. After the flashing is over, the
MP430 micro enters LPM2 state. Note that in LPM2 state all except the DC generator and ACLK are
turned off. At this stage to wake up and exit LPM2, an interrupt is needed. Here this interrupt is
generated by the external interrupt caused by pressing the Launchpad board’s user button. In the
interrupt service routine (ISR), LPM2 is left and is indicated by a brief flash from the Launchpad board’s
green LED. After executing the ISR, the code returns to main function and the process repeats again.

Note that for LPMs, there is no segment in Grace and LPM code definitions can be found in device’s
header files.

74

Demo

[=

RANGE[SE AUTO POWER OFF SEumpug

e
- o,

o Hz

e
i e 11:_\,'
Ll TS

Mo M e e i
I .-'.'.UH,;",‘! ‘l“l‘i!ﬂ -
e o o
=

M Sl T

Demo video: https://youtu.be/DSRTfoSNDIo.

75

https://youtu.be/DSRTfoSNDlo

Internal Flash Memory

In some applications, there are some very important data that we wish to retain in our target device
even when it is powered down. For such purposes we need a nonvolatile memory. Like many modern
micros of today’s market, MSP430s do not contain any separate EEPROM memory or battery-backed
nonvolatile memory. For storing data like calibration data, settings, etc. that we would have saved in
EEPROM memories, we can use the internal flash memory of our MSP430 devices. Though it may

sound difficult and challenging, it is not so. However, we need to be very careful about storage
locations as such that we don’t accidentally use locations where application codes reside.

Shown below is a flash memory map example of a MSP430G2xxx device.

OxOFFFF
* Tl —— DOFFFH
32 kbyte 0x0FEQD (x OFF CO
Flash Ox0FDFF Segment 1 x0FFBF Block
Main Memaory (oo GO0 0:0F FBO
OxOFFTH
OeeOF 000 Segmeant 2 DxOFF4D Black
00 10FF 512-byte 4 Oue0F F3F
\ Block
Flash ! OO F FOO
Information Memaor \
Coe 0000 ¥ \ (ueF FFF Block
- \ OxOFECO
\ OxOFEBF
Sagment 61 I". OxOFESD Block
\ OOFETH
Segment 62 "gll ooreay Bk
\ Ox0FE3H

| t 63 \ Block
| V\oxoso00 | Se9™" \ oxoFEQO
\ |
§ Ox010FF
| * Segment A

1

".I Segment B

1

".I Sagment C

II

I'-,D1ﬂ1 000 Segment D

Note that there are four segments labelled A through D. These are the locations that we will be using
for data storage and are called information memory. The rest is code space. We can also use the code
space too but the code space has 512-byte segment size compared to 64-byte segment size of
information memory. Now why is it so important to use information memory space instead of code
memory? This is because of its small segment size. During memory erase, we have to erase a full
segment. Bit, byte and word level read-write operations can be done easily but erasing is not possible
at these levels. Two separate segments can be used to emulate low level erase. When such mechanism

is applied. One segment acts like a buffer while the other is used for actual storage. Wear-leveling may
optionally be applied. However, these processes add delays and extra cosing.

Segment A is a very important segment as it stores important internal calibration data like DCO
frequency variables, etc. Thus, it is protected and locked separately. It will be wise to leave it and use
the other three segments of information memory space to store data.

76

Code Example

<msp430.h>
"delay.h"
"SW_I2C.h"
"PCF8574.h"
"lcd.h"

Flash_graceInit()

GPIO_graceInit()

BCSplus_graceInit()3

System_graceInit()3

WDTplus_gracelInit()

lcd_print(X_pos, y_pos,

Flash_Erase(address);

Flash_Write_Char(address, value);

Flash_Read_Char(address);

Flash_Write_Word(address,
Flash_Read_Word(address);

value = 0x00;

WDTCTL = WDTPW | WDTHOLD;

Flash_graceInit();

GPIO_gracelInit();

BCSplus_graceInit();

System_graceInit();

WDTplus_graceInit();

LCD_init();
LCD_clear_home();

LCD_goto(0, 0);
LCD_putstr("MSP430 Flash Ex.");

value = Flash_Read_Char(0x1000);

LCD_goto(0, 1);
LCD_putstr("WR: ---");
LCD_goto(9, 1);
LCD_putstr("RD:");
lcd_print(13, 1, value);
delay ms(2000);

(1)

((P1IN & BIT3) == IBIT3)
{

((P1IN & BIT3) == IBIT3);
Flash_Erase(0x1000);
Flash_Write_Char(0x1000, value);
lcd_print(13, 1, value);

P10UT |= BITO;
_delay cycles(40000);
P10UT &= ~BITO;

}

delay ms(20);
lcd_print(4, 1, value);

value++;
delay ms(200);
s

Flash_graceInit(

FCTL2 = FWKEY | FSSEL_1 | FN4 | FN2 | FN@;

GPIO_graceInit(

P10UT = BIT3;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_8MHZ != OxFF) {

__delay_cycles(100000);

DCOCTL = 0x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_G;

BCSCTL3 = XT2S_@ | LFXT1S_@ | XCAP_1;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_print(
chr = 0x00;

chr = ((value / 100) + 0x30);
LCD_goto(x_pos, y_pos);
LCD_putchar(chr);

chr = (((value / 10) % 10) + 0x30);
LCD_goto((x_pos + 1), y_pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);
LCD_goto((x_pos + 2), y pos);
LCD_putchar(chr);

Flash_Erase(address)
*FlashPtr;

FlashPtr = (*)address;
FCTL1 = FWKEY + ERASE;
FCTL3 = FWKEY;
__bic_SR_register(GIE);
*FlashPtr = 0;

((FCTL3 & BUSY) == BUSY);

__bis_SR_register(GIE);
FCTL1 = FWKEY;
FCTL3 = FWKEY + LOCK;

Flash_Write_Char(address,
*FlashPtr = (*)address;

FCTL1 FWKEY + WRT;
FCTL3 = FWKEY;
__bic_SR_register(GIE);
*FlashPtr = value;

((FCTL3 & BUSY) == BUSY);
__bis_SR_register(GIE);
FCTL1 = FWKEY;
FCTL3 = FWKEY + LOCK;

Flash_Read_Char(address)

value = 0x00;
*FlashPtr = (*)address;

value = *FlashPtr;

value;

Flash_Write_Word(address,
*FlashPtr = *)address;

FCTL1 FWKEY + WRT;
FCTL3 = FWKEY;
__bic_SR_register(GIE);
*FlashPtr = value;

((FCTL3 & BUSY) == BUSY);
__bis_SR_register(GIE);
FCTL1 = FWKEY;
FCTL3 = FWKEY + LOCK;

Flash_Read_Word(address)

value = 0x0000;
*FlashPtr = (*)address;

value = *FlashPtr;

value;

Simulation

LCD1
LMo16L
NM=F4%8 Flash Ex.
. '
U1 WR: LBA RD: @9
238 [— = L] n wa
an| REUNMUSEWTDIO P1.OMAOCLKIACLIIAQICAD [o5=—{] LED S8 w= &) o 59 5 = 1 0 s
4 TESTSBWICK P1.1/TAL.O/IUCAORXD/UCADSOMUATICAT |5 R1 >>> EXw oooooooo
£ Avcc P1.2TAD 1/UCADTXDIUCAGSIMOIAZICAZ [= R2 ToToT =l=l=] =l=1=1=]=[=]=]=
=—] avss P1.3/ADC10CLKICAQUTIVREF-VEREF-ASICAS [5=——() Button 10k | 10k - SEE = b e
P1.4/SMCLKUCBOS TEIUCADCLKVREF+VEREFHASICA4TCK o= U3
P1.5TA.0/UCBOCLIVUCADSTEIASICASITMS [52= u LT -
F1.8/TAQ. 1/UCE0SOMIUCBOSCLAGICABITDITELK (25 e SEL PO o=
P1.7/CAOUTIUCEOSIMO/LUCBOSDAIATICAT TDOTDI SDA P15
F2 ==
L] L] ol — L]
% P3.0TAD.2 P2.OITA1.0 _?0 RELE b F3 ﬁ Eack Light
] Fa1mat0 pzamait = A R3O 10 |
45v] Pa-2mALl PR2TAL1 oo Rt = =] A0 =5 0
5] Faamal2 P23TAL0 o= At 1 A PE a7
<gn] F3-4TADO F2ATA12 [o—= A2 F7 RT
— F3.5MA01 F2.5TA1.2 10k
u u 10k
L rasmanz XINP2 8TAD 1 |22 | eof oo (R D1
= P3.7TAICLKICACUT XOUTIP2.7 bl R6 3
+ > DSW1 1o G— =0 o—— O Button
MSP43052553]
DIFSW._3 220R
LED-RED
.]
7
/A
Explanation

The flash memory module of MSP430s has an integrated controller that controls programming and
erase operations. The controller has four registers, a timing generator, and a voltage generator to
supply program and erase voltages.

Clock Source Divider Flash Timing Generator

Current Value

363.64 kHz

22
8000 kHz Min Max
| 257 kiiz| | 476 kHz
Interrupt Enables
[Flash Ctrl Access Violation Int Enable Generate Interrupt Handler Code

View All Interrupt Handlers

Hote1: Min and Max values for Flash Timing Generator are from datasheet.

Hote 2: By enabling the interrupt handler, Grace generates a fully working interrupt
service routine in InterruptVectors_init.c file inside src folder, User could insert
code inside the specified area of the 1SR and the code is preserved. When a user
disables the interrupt handler, the user's inserted code remains at the bottom of
the file which is automatically re-inserted if the user re-enables the interrupt
handler. User could also manually remove the code when it is no longer needed.

Using Grace, we initialize the aforementioned:

FCTL2 = FWKEY | FSSEL_1 | FN4 | FN2 | FNe;

83

To write a byte, we need two things — memory location and the value we wish to write. This memory
location is that piece of memory space where we wish to store the value.

Flash_Write_Char(address, value)

*FlashPtr = (*)address;

FCTL1 = FWKEY + WRT;
FCTL3 = FWKEY;
__bic_SR_register(GIE);
*FlashPtr = value;

((FCTL3 & BUSY) == BUSY);
__bis_SR_register(GIE);
FCTL1 = FWKEY;
FCTL3 FWKEY + LOCK;

Firstly, the address of the memory location where data is to be stored is pointed out. Flash write
process starts by setting the write bit, followed by removing the flash protection. Once these are done,
all interrupts are temporarily disabled to avoid any accidental write or illegal operation. The value to
be written is then pointed. Until the value is successfully written all other processes are halted. Once
the value to be stored is successfully written, interrupts are enabled, the write bit is cleared and the
flash lock is applied.

Reading the flash is simpler. We just have to point the location we wish to read.

Flash_Read_Char(address)

value = 0x00;
*FlashPtr = (*)address;

value = *FlashPtr;

value;

The process for erasing is similar to write processes. The only difference is Erase bit instead of Write
bit.

Flash_Erase(address)
*FlashPtr;

FlashPtr = (*)address;
FCTL1 = FWKEY + ERASE;
FCTL3 = FWKEY;
__bic_SR_register(GIE);
*FlashPtr = 0;

((FCTL3 & BUSY) == BUSY);
__bis_SR_register(GIE);
FCTL1 = FWKEY;
FCTL3 = FWKEY + LOCK;

84

The same read-write processes can also be applied to read/write word-level values.

The code demoed her works by reading the last data stored in the target flash location (0x1000) and
incrementing a variable named value. Only this location is read and updated when the Launchpad
board’s button is pressed.

Demo

[

MSP428 Flash
WE: Bd4e RED:

T T e T

Demo video: https://youtu.be/o LUBiIWJ50g.

85

https://youtu.be/o_LUBiWJ5Og

Timer Overview

There are several types of timers in MSP430 micros. These include Watchdog Timer (WDT), Real Time
Clock (RTC), Basic Timer 1 and Timer A and Timer B. Timer As and Bs are general purpose 16-bit timers
that are suitable for time base generations, pulse width modulations (PWM) and input captures. The
other three types have special uses and their names suggest their purposes. All MSP430 devices have
at least one Timer A module and a WDT modaule. Since both are common amongst all devices, we will
be studying about them here. Timer As and Bs are almost same. The difference between the two is
the presence of some additional features like more Capture/Compare (CC) channels in Timer Bs.

Timer A

InTl’s literature, timers are named like Timer0_A3, Timer_B7, etc. Anumber can be present right after
the word Timer in some case and in other cases, it may be absent. This number is present whenever
there are multiple timers of same type in a MSP430 micro. For example, there are two Timer A3s in
MSP430G2553 micros and so they are labelled as Timer0_A3 and Timer1l_A3. The other number in
the timer’s name after the timer type letter denotes the number of CC channels available with it.

Shown below is the block diagram of Timer A module. MSP430G2452 has one and MSP430G2553 has
two Timer A3 modules. Typically, in any micro’s timer we would expect two things - first a counter
block (highlighted in purple) and second CC modules (highlighted in green). As we can see the CC
channels share the same TAR register and so they share the similar properties.

rC Timer Blook
TASSELx . Timer Clock M
1t i o M
TACLK Divider I 16-bit Timer | Count
- TAR l l— EQUO
~ 124478 ol Mod
ACLK H Clear RE &
SMCLK
INCLK I—b SetTAIFG
TACLR
CCRO
CCR1
CCR2
5CS
CCI2A
T
ccize) 5 ! 3 o
TACCR2
oo — =] |
e g
)-l Comparator 2 |
EQUZ AP
SCC1 m—
o Set TACCR2
CCIFG
LD —
™ Output —
Unit2 D a B OUT2 Signal
EQUD — Timer Clock —=
Resst
e
|] ﬁ] POR
OLTMOD:

86

The diagram below shows that clock sources we can use for a Timer A module. It can be clocked with
two internal clock sources — ACLK and SMCLK or with two external clock sources — TACLK and INCLK.
Actually, INCLK and TACLK are same but one is complementary of the other. These external clocks can
be used to make the timer module work as counter.

rC Timer Block
TASSELx O merGlock

MCx
11 s _ i
TACLK Divider - '“"?AE mer Count

- Mode

ACLEK 1 12478 Clear

SMCLK 1
INCLK 1

Next, we have a prescaler to scale down selected clock source followed by the counter block. What's
interesting about MSP430 timers is the counter’s mode of operation. There are four modes of counter
operation and these modes define counting direction:

e Stop Mode
It is basically a hold state. All timer registers are retained and the timer is halted.

e Continuous Mode
In this mode, the timer counts up from 0 to top value (here OxFFFF or 65535 in 16-bit Timer
A3) and then rolls over to zero.

e Up Mode
This mode is same as continuous mode except for the top value. The top value of the timer is
set by the value in TACCRO.

e Up/Down Mode
In this mode, the timer counts from 0 to TACCRO value and then rolls back from that value to
0. The period of the timer is twice the TACCRO counts.

Then we have timer interrupt just as in any other microcontroller.

87

MSP430G2452 has one Timer A3 module and so it has three CC channels. Likewise, MSP430G2553 has
six CC channels. When it comes to extreme engineering, Tl sometimes seems to overengineer their
products. For example, CC channels are not hard fixed to dedicated pins only unlike other micros. Each
CC channel has a set of pins associated with it and so they can be remapped if needed. Shown below
is the block diagram of a Timer A3 CC channel. The left side of the diagram has all the components for
input capture while the right side is intended for compare-match or PWM output. Common to both is
the TACCRn block. It is a very important block.

Comparator 2

EQuU2 CAP

Set TACCR2
CCIFG

The basic theme of PWM generation as with any microcontroller is to change the logic state of an
output pin when the countin it associated TACCR register matches with the count in its timer’s counter
register — simply like a binary comparator. This process is called compare-match process. This is
exactly the same idea used in MSP430s. Check the rudimentary timing diagram below. For five
successive falling edges of the reference clock, the PWM output is high and for one edge, the output
is low, resulting in about 83% duty cycle. The reference clock here is actually the timer clock and the
comparison is done by comparing the count stored in TACCRn. Varying TACCRn'’s count results in duty
cycle change.

Reference Clock

PWM Output

88

Input capture is somewhat just the opposite of PWM generation. In capture mode, CC channels can
be used to record time-related info of an incoming waveform. A timer in this mode can be left to run
on its own. When a waveform edge is detected, the corresponding time count of the timer is stored
in CC register. With two such consecutive captures, we get a difference in timer’s time counts. This
difference can be used to measure frequency if the captured events are alike (two successive
rising/falling edges) or duty cycle if the captured events are different (different edges). Again, TACCRn
stores the time capture when a capture event occurs.

Frequency Capture

E bl R

Capturing two same successive edge gives frequency readout

Duty Cycle Capture

= =)

Capturing two different successive edge gives duty cycle readout

As an example, check the arbitrary timing diagram below:

Reference Clock

Captured Waveform

Here four falling edges of reference clock (timer clock) is equal to the high or on time of the captured
waveform. Since the reference clock’s period is known, we can deduce pulse width.

89

WDT+

WDT+ is a 15/16-bit watchdog timer. It is mainly intended to prevent unanticipated loops or stuck up
conditions due to malfunctions or firmware bugs. The concept behind any watchdog timer is to
regularly refresh a counter so that the count never reaches a predefined limit. If due to any reason
this limit is exceeded, a reset is issued, causing the host micro to start over again.

WDT+ can additional be used as an interval timer just like other timers if watchdog timer functionality
is not needed. We can, then, use WDT+ for time-base generations.

WDT+

MDE
WDTGn
Int.
- IE——
Flag = j
Pulsa
Generator
16—-bit
PUe f—
Fail-Safe W
MCLK o Riw
SMCLK I T WDTHOLD
ACLEK S WDTNMIES
WDTHKMI
A EM
DTTMSEL
WDTCMNTCL
WDTSSEL
WDTIS
WDTISD
RV

Clock [MCLKAgive
Request B————» SMCLK Active
e ACiKActive

WDTH+ is password protected and so a wrong password causes it to fail and reset immediately. This is
the red box in the diagram above. Whenever we need to change anything related to WDT+, we have
to enter the correct password which is 0xX5A00. WDT+ consists of a 16-bit counter (green box) but we
don’t have access to it. The purple region consists of WDT options. The red and the purple boxes make
up Watchdog Control (WDTCTL) register and this is what we are only allowed to code.

90

Free Running Timer

Free running timers are useful in many cases. Free running timers can be used as random number
generators, time delay generators, instance markers, etc. Consider the case of time delay generation
for instance. Rather than using wasteful CPU-cycle dependent software delay loops, it is much wiser
to use a hardware timer to create precise delays and timed events. In terms of ideal coding, no task
should keep CPU busy unnecessarily nor should it keep other tasks waiting for its completion. Best
coding and design are achieved if things are arranged in such an orderly way that that there is almost
no wastage of any resource at all.

By free-running what | really mean is we start a timer at the beginning of our code and keep it running
without timer interrupt. We just take note of its counter. Here we will see how to use Timer_A3 like a
free running timer and we will use it to blink Launchpad board’s LEDs.

91

Code Example

<msp430.h>

GPIO_graceInit()5
BCSplus_graceInit();
Timer@_A3_gracelInit();
System_graceInit();
WDTplus_gracelInit()

vector=TIMER® A1l VECTOR
TIMER®_A1_ISR_HOOK(

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_gracelInit();

Timer@_A3_graceInit();

System_graceInit();

WDTplus_graceInit();
(1)
(TAGR >= 32768)

P1OUT |= BITS6;
P10UT &= ~BITO;

P10OUT |=
P10UT &=

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS 0;

(CALBC1_1MHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S_@ | LFXT1S_@ | XCAP_1;

GPIO_gracelInit(

9;

BITO | BIT6;

9;

9;

9;

&= ~(BIT6 | BIT7);

0;

Timer@_A3_graceInit(

TAOCTL = TASSEL_2 | ID_3 | MC_2;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

95

Simulation

=
i o
[L
ol D:I
[m)] [m]
4 4 U1
- LED_GREEN (O———2= P1 0/TAOCL KIACLK/AQICAD P20 (=2
== P11/TAD O/AT/CAT P21 =
R3 R4 —34 P1.2/TAQ. 1/A2/CA2 P22 ==
47k 47k BUTTON Q———=27 P1 3/ADC10CLK/CAOUT/A3VREF-VEREF-/CA3P2 3 ==
<TEXT> <TEXT> R1 R2 o P1-4/TAO 2/SMCL/A4NVREF +VEREF +/CA4/TCKP2.4 ==
. 220R 220R <ra] P15/TAO.OISCLKIASICASITMS P25 [—
sutton b <TExT= <TEXT-LED_RED O =2 P1.6/TAO.1/SDOISCLIAGICAS/ TDITCLEINIP2 6/TAO.1 [o=r=
- <251 BLI/SDUSDA/ATICATTDO/TDI XOUTP27 |35
RST O RST/NMISBWTDIO TEST/SBWTCK
|] RST |] USER D1 D2 MSP430G2452
TEXT>
TEXT> TEXT> LED-GREEN LED-RED 5 -
@ - @ <TEXT> LED_GREEN O—— A
LED RED O——18
L — —lc

Explanation

In this demo, Timer_A3 is clocked with SMCLK divided by 8. SMCLK has a frequency of 1IMHz and so
Timer_A3 is feed with a 125kHz clock. This gives us a timer tick period of 8 microseconds. Since the
timer is programmed to operate in continuous mode, i.e. it will count from 0 to top value of 65535,
the timer will overflow roughly about every 500 milliseconds. We, thus, have an interval window of
500 milliseconds.

Clock Source Divider Counting Mode

Divider - /1 Stop Mode

Divider - /2 16-bit Timer/Counter Up Mode

Divider - /4 'S ontinuous Mode
1000.0 Clear Up/Down Mode

&‘ |J__| Timer_A overflow interrupt enable

Remove Interrupt Handler Code

View All Interrupt Handlers

Timer Capture/Compare Block #0

Desired Timar Period: 524.28 ms Time(r) Period 524.3 ms
Capture Register. D Clock Ticks Time(r) Frequency 1.5 Hz
Input Selection Capture Mode Maode Output Pins

Timer OFF

P1.1,/TAD.CCIOA Rising Edge Cutput Compare/Peric
GND Falling Edge Input Capture
WV Both Edges

Output Made: PWM output mode: 0 - OUT bitvalue ~ | [] Set OUT bit High/Low

Interrupt Enables
D Capture/compare interrupt enable 0 Generate Interrupt Handler Code

View All Interrupt Handlers

96

TAOCTL = TASSEL 2 | ID 3 | MC 2;

We want to blink the Launchpad board’s LEDs at the rate of 250 milliseconds. Thus, we need to check
or compare if the counter register TAOR has gone past 50% of the full scale 16-bit value. This is an
event marker because with reference to this mark, we toggle the states of the LEDs. The idea shown
here is actually the concept with which PWMs are generated by compare-match principle inside timer
hardware and so it is worth understanding this idea.

(TAGR >= 32768)

P10UT |= BIT6;
P10UT &= ~BITO;

97

Demo

3 ummmmﬂ" EYE o

1 P15

S o

I, % 53!

ik iy \ﬁ L]
= far B . 2T a gy ™
» e Tat (i o = RN ENULATION R«
g\ 02 .

ﬂ.l ...|.....“ %@ A

St :EID1A (UART) §
= F-PL2 waRT)
SRl s

.m . D - : — ;

- . _._. N 5 ; A M.: .. w _I_ & m..nl_su E

P2,2 D P2.4 [

- P2 p~'dpin P25 T, A =l e) ‘A4pin T P2.s - .

@%ﬂ m.w..._”.u.._. ‘| ; ik : L R @%‘! .

£ i .!WMMM ﬁu.ﬂ_::ﬂ*—_tﬂn P .” | : . x .. .nﬂ_m Fﬂ::ﬂ,?n

- - n 2
-

f—

=

=
e =
= .

-
[s

OGvswRhb7ds.

Demo video: https://www.youtube.com/watch?v

98

https://www.youtube.com/watch?v=OGvswRhb7ds

Timer Interrupt

We have already seen how to use a timer as a free-running timer. However, in most cases we will need
timer interrupts. Timer interrupts are periodic interrupts which means they occur at fixed intervals
just like clock ticks. Owing to this nature we can split multiple tasks and make them appear as if all of
them are happening concurrently. For instance, we can use an ADC to measure the temperature of a
room while using a timer to periodically update the temperature display. This is the main concept in
driving segment displays, dot-matrix displays and many more although it is not the only thing we can
do with timer interrupts.

g
2
=
S
g
[-]

Serial 7-seg Display 2 ameyo

A timer interrupt is also at the heart of any typical Real-Time Operating System (RTOS).

Basic RTOS
g ™y

Time Slot 1 S —
\ v, ?
3 I
s N !
Time Slot 2 :
o J |
I I
[|
[|
l' I
I
I

Time Slot n —_—

Here we will stick to a simple example of a seven-segment display-based second counter. Rather than
demoing LED blinking with timer interrupt | chose this example because this has many applications in
the field of displaying information on LED-based displays. The same concept can be expanded for dot-
matrix displays, LED bar graphs, alphanumerical segmented displays and many more.

99

Code Example

<msp430.h>

num[10] = {@xCO, OxF9, OxA4, 0OxBO,
0x80, 0x90};

GPIO_graceInit()
BCSplus_graceInit()
Timero_A3_graceInit();
System_graceInit()3
WDTplus_gracelInit()

vector=TIMERO_A1l_VECTOR
TIMERO_A1_ISR_HOOK(

ms++;
(ms > 999)
{

ms = 0;
value++;

(value > 9999)
{

}

value = 0;

(seg)
1:

n = (value / 1000);
P20UT = num[n];
P10UT = OxEQ;

)

2:

n = ((value / 100) % 10);
P20UT = num[n];
P10UT oxDo;

3

n = ((value / 10) % 10);
P20UT = num[n];
P10OUT = 0xBO;

0x92, 0x82,

OxF8,

n = (value % 10);
P20UT = num[n];
P10OUT = 0x70;

B

seg++;
(seg > 4)
{

}

TAOCTL &= ~TAIFG;
TAIV &= ~TAOIV_TAIFG;

seg = 1;

main()

GPIO_graceInit();

BCSplus_gracelInit();

Timer@_A3_graceInit();

System_graceInit();

WDTplus_graceInit();

GPIO_graceInit(

9;

BIT4 | BIT5 | BITé | BIT7;

9;

9;

&= ~(BIT6 | BIT7);

BITe | BIT1 | BIT2 | BIT3 | BIT4 | BIT5 | BIT6 | BIT7;

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_@ | DIVS_@;

(CALBC1_1MHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA 0;

BCSCTL3 = XT2S @ | LFXT1S_@ | XCAP_1;

Timero_A3_ graceInit(

TAOGCCRO = 999;

TAOCTL = TASSEL_2 | ID_@ | MC_1 | TAIE;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

Simulation

LED-RED

U1

LED_GREEN (3 = P1.OMTAOCLKIACLKIADICAD p2o [

=22 P1.0/TA0.0/A1/CAT P21 (2

—2a P1.2MA0 1/A2ICA2 P22 o

BUTTON —{ P1-3/ADC10CLK/CAOUTIASVREF-VEREF-CAP2.3 [

AQy = P1.4/TAQ 2/SMCLKIA4/VREF +/VEREF-+/CA4TCHP2 4 (%

2208 B O P1SMAQUSCLKIASICASITMS B
C O———12-{ P1.6/TAD. /SDO/SCLIAGICABTDITCLAINF2 6TAQ. 1 -

D Q——2- P17/SDUSDA/ATICAT/TDOMTDI xouTp2 7 (2%

RST O—18=| RSTANMISBWTDIO TESTISBUWTCK
D2 MSP43062452

il

L4000

104

Explanation

In this demo, Timer_A3 is configured as an up counting timer, i.e. it will count from 0 to a top value
determined by the contents of TAOCCRO register. Again, SMCLK is used as the clock source for the
timer but this time it is not scaled down. SMCLK is set to 1 MHz and so does Timer_A3. This means
every one tick of Timer_A3 is one microsecond in duration. To make it appear that all four seven
segments are simultaneously on without any flickering, we need to scan them fast enough to fool our
eyes. We also have to ensure that each segment gets enough time to light up properly. In order to do
so we need to scan the segments at one millisecond rate. To get one millisecond from a timer with
one microsecond tick interval, we have to load it with 999, not 1000. This is so because from 0 to 999
the total number of ticks is 1000. In short, 1000 times 1 microsecond equals 1 millisecond. Thus,
TAOCCRO is loaded with 999.

16-bit Timer/Counter

Clear

Counting Mode
Stop Mode

Clock Source Divider

Divider - /2
Divider - /4
Divider - /3

Continuous Mode
Up/Down Mode

|£ Timer_A overflow interrupt enable

Remove Interrupt Handler Code

Wiew All Interrupt Handlers

Timer Capture/Compare Block #0

Desired Timer Period: 1.001 ms Time(r) Periad 1 ms
Capture Register: 1000 Clock Ticks Time(r) Frequency 9959 Hz
Input Selection Capture Mode Mo de Cutput Fins
CC Input OFF TAD.0 Output OFF
P1.1,/TAD. CCIDA Qutput Compare/Peric P1.1/TADC
GMD Z 0 £ Input Capture I P1.5/TAD.C
CC EBoth Edges
Cutput Mode: PWM output made: 0 - OUT bitvalue ~ | []Set OUT bit High/Low
Interrupt Enables
[]capture/compare interrupt enable 0 Generate Interrupt Handler Code

View All Interrupt Handlers

TAOGCCRO = 999;

TAOCTL = TASSEL 2 | ID @ | MC_1 | TAIE;

105

Everything else in this demo is done inside Timer_A3 interrupt subroutine (ISR). There are two parts
inside the ISR. The first as shown below is responsible for counting time.

ms++;
(ms > 999)
{

ms =
value++;

(value > 9999)
{

}

value = 0;

The other portion is tasked with the LED segment scanning and data display part. At every millisecond,
a new segment is turned on, keeping others off. At the end of the ISR, interrupt flags are cleared.

n = (value / 1000);
P20UT = num[n];
P1OUT = OxE0;

J

2:

n = ((value / 100) % 10);
P20UT = num[n];
P10UT = 0xDO;

J

3:

n = ((value / 10) % 10);
P20UT = num[n];
P10OUT = 0xBOo;

)

4:

n = (value % 10);
P20UT = num[n];
P1OUT = 0x70;

J

}

seg++;
(seg > 4)
{

seg = 1;

}

TAOCTL &= ~TAIFG;
TAIV &= ~TAOIV_TAIFG;

- N
|| i L=
= 1] L _ Ml
-i'-.*u L1 ||| [

- - e -l L \a 1l
=, 'ﬂ Ijlgn,,.,—:-uw.-'-“__._“j” =+
: i

i}

el

1

Demo video: https://www.youtube.com/watch?v=8EG9rcOAATo.

1

1. ML

107

https://www.youtube.com/watch?v=8EG9rcOAATo

Pulse Width Modulation (PWM)

At present PWM hardware is a must for any microcontroller because in many cases, it is needed to
extract something more than ones and zeros from it. For example, consider the case of a sine wave
generator. Without the aid of a Digital-to-Analog Converter (DAC), generating sine waves seems
nearly impossible. However, we can still achieve that using Pulse Width Modulation (PWM) and some
mathematical tricks.

U
A
PWM signal
before filtration
—_—p
t
RC filter
u
- — PWM signal
TN P
e N g \\ after filtration
// ., / . - »
—» N e AN
- RN St

Generating waveforms, pulses with variable widths, patterns, sounds, communications pulses like
those in IR remotes, speed control, etc require PWM hardware. Keep in mind that all MSP30x2xxx
devices do not have any inbuilt DAC and so if analogue output is needed, we can use PWM with
necessary external RC filtering to create analogue output.

A few things must be observed before using MSP430 PWM hardware:

e Timer APWNMs are general purpose PWMs.
e There’s no separate option for dead-time.
e Maximum PWM resolution is 16-bit.

e CC Channel 0 is not like the other two channels. It has limited output options and in GRACE
you’ll notice that you can’t set PWM duty cycle.

e PWM frequency and resolution are interdependent.

e PWM pins are limitedly remappable.

108

Code Example

<msp430.h>
"delay.h"

GPIO_graceInit()3
BCSplus_graceInit()3
Timero_A3_graceInit()
System_graceInit()
WDTplus_gracelInit()

main(

pwm_value = 0;

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_gracelInit();

Timero_A3_graceInit();

System_graceInit();

WDTplus_gracelInit();
(1)

(pwm_value = 9; pwm_value < 1000; pwm_value++)
TAOCCR1 pwm_value;

TAGCCR2 = pwm_value;

delay ms(1);

(pwm_value = 999; pwm_value > ©; pwm_value--)
TAOCCR1 pwm_value;

TAGCCR2 = pwm_value;
delay ms(1);

GPIO_gracelInit(

P1SEL2 = BIT4;

9;

| BIT4 | BIT6;

| BIT4 | BIT6;

9;

&= ~(BIT6 | BIT7);

9;

BCSplus_graceInit(

BCSCTL2 = SELM_@ | DIVM_© | DIVS_®;

(CALBC1_1MHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_G;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

Timer@_A3_graceInit(

TAGCCTLO = CM_@ | CCIS_© | OUTMOD_4;

TAOCCTL1 = CM_© | CCIS @ | OUTMOD_3;

TAGCCTL2 = CM_@ | CCIS_@ | OUTMOD_7;

TABCCRO® = 999;

TAGCCR1 = 10;

TAGCCR2

TAOCTL = TASSEL_2 | ID_@ | MC_1;

System_graceInit(

IFG1l &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

Simulation

=
w
w (=]
5 w
("4
1 1
(=] (=]
= =] U1
LED_GREEN o—;: P1.0TAOCLK/ACL KIADIGAD P20 —g
2 PrimAs oraticAT P21 (=5
—=] P1.2TAD.1/A2ICA2 P22 =3
BUTTON O 2= P1.3/ADCI0CLKICAOUTIASIVREF VEREF /CAP2 3 (11
So P1.47TAD 2SMCLKIA4VREF +VEREF+/CAAITCR2 4 |13
290R =] P1.STAO.0/SCLIASICASTMS P25 =
LED_RED {3 13- P1.6/TA.1/SDOISCLIAGICABITDUTCLENP2 6TAD.1 (=13
12| P1.7/SDUSDAIATICATTDOTDI XoUTP27 | =12
RST O RST/NMISBWTDIO TESTISBWTCK |—L
D2 MSP430G2452
LED-RED i}
A
_H
— = - C
—Jbp

Digital Oscilloscope

Channel C

Explanation

Just as in the previous example, SMCLK is set to 1MHz. Timer_A3 is also setup for up counting with a
top value of 999, resulting in 1ms time duration. Note no interrupt is used and other CCR registers are
loaded with 10 — an arbitrary value.

TAOCCRO
TAOCCR1

TAGCCR2

TAOCTL = TASSEL 2 | ID @ | MC_1;

114

Prior to Timer_A3 setup, CC channels are setup. OUTMOD is that stuff that sets PWM type.

TAOCCTL® = CM_O | CCIS © | OUTMOD_4;

TAOCCTL1 = CM_@ | CCIS_@© | OUTMOD_3;

TAGCCTL2 = CM @ | CCIS @ | OUTMOD 7;

In this demo, three different PWMs are set to show the differences.

115

Clock Source Divider
StoE Mode

g:::g:: :::i 16-bit Timer/Counter Ccu'ntinucuus Mode
Divider - /2 Clear Up/Down Mode

Counting Mode

10000 kHz

|£| H__‘ Timer_& overflow interrupt enable

Generate Interrupt Handler Code

View All Interrupt Handlers

Timer Capture/Compare Block #0

Desired Timer Period: ms Time(r) Period 1ms
Capture Register: Clock Ticks Time(r) Frequency 1000 Hz
Input Selection Capture Mode Mode Cutput Fins
DO SN | Timer OFF TAD.D Output OFF
P1.1/TAD.CCIOA Rising Edge EE_
GMD Falling Edge Input Capture —— P1.5/TAD.O
VCC Both Edges
Cutput Mode: PWM output mode: 4 - Toggle v Set OUT hit High/Low
Interrupt Enables
[] capture/compare interrupt enable 0 Generate Interrupt Handler Code
View All Interrupt Handlers
Timer Capture/Compare Block #1
Desirad PWW Duty Cycle: %
Capture Register: Clock Ticks
Input Selection Capture Mode Maode Cutput Pins
DD | DO (Timer OFF TAO.1 Output OFF
P1.2/TAD.CCITA Rising Edge P1.2/TAD.1
GND Falling Edge Input Capture
WEC Both Edges P2.6/TAD
Clutput Mode: | Py output mode: 3 - PWM set/reset Set OUT bit High/Low
OxFFFF
TxCCRO
TxCCRx

PWM Duty Cycle . |

Period - Frequency 1 ms 1000 Hz |

Interrupt Enables

[] capture/compare interrupt enable 1 Generate Interrupt Handler Code

View All Interrupt Handlers

116

Timer Capture/Compare Block #2

Desirad PVWW Duty Cycle: %
Capture Register: Clock Ticks

Input Selection Capture Mode Mode Cutput Pins
DD || | Timer OFF TAD.2 Output OFF
P1.4/TAO.CCIZA Rising Edge E_
GMND Falling Edge Input Capture
VICC Both Edges
Cutput Mode: | P output mode: 7 - PWM reset/set Set OUT bit High/Low

OxFFFF

T«xCCRO

TxCCRx

_____ 1] —
PWh Duty Cycle 1% |

Period - Frequency 1 ms 1000 Hz|

Interrupt Enables
[] capture/compare interrupt enable 2 Generate Interrupt Handler Code

Wiew All Interrupt Handlers

PWMs can be of the following types:

QUTMODXx Mode Description

The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately
when OUTx is updated.

001 Set The output is set when the timer counts to the TACCRx value. It remains set until a reset of
the timer, or until another output mode is selected and affects the output.

000 Output

The output is toggled when the timer counts to the TACCRXx value. It is reset when the timer
010 Toggle/Reset counts to the TACCRO value.
011 Set/Resel The output is set when the timer counts to the TACCRx value. It is reset when the timer

counts to the TACCRO value.

The output is toggled when the timer counts to the TACCRXx value. The output period is

100 Toggle double the timer period.
101 Reset The output is reset when the timer counts to the TACCRx value. It remains reset until another
output mode is selected and affects the output.
The output is toggled when the timer counts to the TACCRXx value. It is set when the timer
10 Toggle/Set counts to the TACCRO value.
The output is reset when the timer counts to the TACCRx value. It is set when the timer
111 Reset/Set

counts to the TACCRO value.

Note that CCRO has limited PWM options and it is the value of its register that sets PWM frequency.
The other CCR registers are loaded with values that determine respective PWM duty cycles.

117

Demo

Demo video: https://www.youtube.com/watch?v=dbSPi6LbsQg.

118

https://www.youtube.com/watch?v=dbSPi6LbsQg

Timer Input Capture

In many cases, it is needed to measure the timing info like period, frequency, duty cycle, etc of an
incoming signal. Based on these data we can find out the RPM of a robot’s wheel, the pulse widths of
an IR remote stream carrying command information, the frequency of AC mains, the patterns of an
incoming waveform, etc. Hence comes the purpose of timer input captures.

Y V

1
Microcontroller

- @ s

We know that Timer A3 has three such CC channels and so there are three capture inputs per Timer
A module. We can use these channels to capture incoming waveforms of unknown frequencies/duty
cycles and have them measured with respect to a known clock like SMCLK.

Again a few things must be observed before using MSP430 input capture hardware:

Signals coming to input pins must never cross the max. VDD limit or fall below ground level
(i.e. sensing negative potentials).

It is better to galvanically isolate input pins if they are to sense external high voltage signals.
Input pins must not be left floating.

Unless needed, it is wise not to use RC filters for inputs.

Input capture pins are limited remappable just like PWM pins.

Timer clock must be set as such that we get maximum measurement resolution without
compromising reliability.

Timer overruns/overflows must be taken into account.
Timer capture inputs can be tied to power pins internally and connecting so results in no

measurements. When not capturing anything, select stop mode and clear the timer.

119

Code Example

<msp430.h>
"delay.h"
"lcd.h"

overflow count = 9;
pulse_ticks = 0;

start_time =
end_time = 0;

H

GPIO_graceInit()
BCSplus_graceInit(
Timero_A3_graceInit(
Timerl_A3_graceInit();
System_graceInit()3
WDTplus_gracelInit()
lcd_print(X_pos,

vector=TIMER1_A1l_VECTOR
TIMER1_A1_ISR_HOOK(

(TA1IV == TA1IV_TACCR1)

{
end_time = TA1CCR1;
pulse_ticks = (end_time - start_time);
start_time = end_time;
TA1CCTL1 &= ~CCIFG;

i=0;
time_period = 0;

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_gracelInit();

Timer@_A3_graceInit();

Timerl_A3_graceInit();

System_graceInit();

WDTplus_gracelInit();

LCD_init();
LCD_clear_home();

LCD_goto(0, 0);
LCD_putstr(“"Capt./us:");
delay ms(10);

(1)

((P1IN & BIT3) == 0)

{
P10UT |= BITO;
((P1IN & BIT3) == 0);

i++;
(i>9)

0;

P1OUT &= ~BITO;

(1)

TAOCCRO = 9999;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

J

TAOCCRO = 4999;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

TAOCCRO = 1999;
LCD_goto(9, 1);
LCD_putstr("Period/ms:

)
4:

TAOGCCRO = 999;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

TAOCCRO = 166;
LCD_goto(0, 1);

LCD_putstr("Period/us: 334");

)

TAOCCRO = 1230;
LCD_goto(0, 1);
LCD_putstr(“Period/ms:

)

TAOCCRO = 2626,
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

TAOCCRO = 4579;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

J

TAOCCRO = 499;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

TAOGCCRO = 6964;
LCD_goto(9, 1);
LCD_putstr("Period/ms:

)

}

time_period = (pulse_ticks >> 1);
lcd_print(10, 0, time_period);
delay ms(400);

GPIO_graceInit(

BITe | BIT1 | BIT6 | BIT7;

BIT3;

BIT1;

&= ~(BIT6 | BIT7);

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_©@ | DIVS_®;

(CALBC1_1IMHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S_© | LFXT1S_2 | XCAP_1;

Timer@_A3_graceInit(

TAGCCTLO = CM_© | CCIS_ @ | OUTMOD_4;

TAOCCRO = 9999;

TAOCTL = TASSEL_2 | ID_1 | MC_1;

Timerl_A3_graceInit(

TA1CCTLO = CM_1 | CCIS_® | OUTMOD 1;

TAICCTL1 = CM_1 | CCIS_ @ | SCS | CAP | OUTMOD_© | CCIE;

TALCTL = TASSEL 2 | ID @ | MC_2;

System_graceInit(

IFG1l &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_print(X_pos, y_pos,
tmp[6] = {0x20, ©x20, 0x20, Ox20, 0x20, Ox20} ;

tmp[0] (((value / 100000) % 10) + ©x30);
tmp[1] (((value / 10000) % 10) + ©x30);
tmp[2] (((value / 1000) % 10) + ©x30);

tmp[3] (((value / 100) % 10) + ©x30);
tmp[4] (((value / 10) % 10) + ©x30);
tmp[5] ((value % 10) + 0x30);

LCD_goto(x_pos, y pos);
LCD_putstr(tmp);

Simulation
LCD1
LMO16L
Cart. usi BEBEAA
Period-m=i 13,9
v ow
¢8¢ 2%, 8-HB3885
|| w[al= ||||....
i BEEEEEE IR EEREA D
as
SCL PO|o:
sSDA P1
p2 [R8
T P3| =——O BACKLIGHT
P4 =10
capT O—2 a0 A0 PS Ny
nnnnn Al PBICHS
—B A2 P7
PCFa574
—_— C
| iAtian DSW1
DIPSW_3
4
U1
= RST/NMI/SBWTDIO P1.0WTANCLK/ACLK/ADICAD :‘ {J) LED_RED
TESTISBWTCK P1.1/TAD.0/UCADRXD/UCADSOMIFATNCAT T {J) CAPT
P1.2TAD1MUCADTXD/MCADSIMO/AZICAZ .
P1.3/ADC10CLKICADUTNREF-VEREF-/A3/CAZ T {3 BUTTON
1 4/SMCLK/UCBOSTE/UCAOCLKNVREF+WVEREF+/A4/CA4TCK Ooa
P1.5/TAD.O/UCBOCLK/UCADSTE/ASICASTMS =14 LED_GREEN
P1.6/TAD1/UCBOSOMINUCBOSCL/AGICABTDITCLE =15 SCL
P1.7ICAQOUT/UCBOSIMOMUCBOSDAATICATITDOMDI —=——=) SDA
P2OMAL0 52
P2.1/TA1.1 10_0 CAPT
P2.2ITA11 1
P2.3mAa1.0 T
P2.4TA1.2 =13
P2 5TA12 =15
XINP2.6/TADA ﬁ
XoUuTP27 —

MSP430G2553

127

Explanation

For this demo, | used a MSP430G2553 micro as it has two independent timers. One of these timers is
used as a waveform generator and the other as a waveform capture unit.

TimerQ_A3 is set up as a PWM output generator with only CC channel 0 active. CC channel O is set just
to toggle its output logic states and not duty cycle. SMCLK is divided by two and feed to this timer, i.e.
this timer has a tick frequency of 500 kHz. As stated before, in order to change the PWM frequency,
we need to change the value of TAOCCRO in up mode counting. We will employ this fact to alter
waveform frequency in the main loop.

TAOCCTLO = CM_ @ | CCIS_@ | OUTMOD 4;

TAOCCRO = 9999;

TAOCTL = TASSEL 2 | ID 1 | MC 1;

The other timer - Timerl_A3 is setup to capture the waveform generated by Timer0_A3. Timer
interrupt is used to quickly respond to incoming waveform’s rising edges. We will be measuring the
time period of Timer0_A3’s waveform and so we are interest in measuring the time difference
between like edges — here rising edges. To get high accuracy, SMCLK is not divided. This gives us a
minimum capture period of 1 microsecond and a maximum of about 65 milliseconds provided that we
are using continuous mode counting. In other words, Timerl_ A3 has double scanning rate than what
Timer0_A3 can throw at it — a concept similar to Nyquist theorem.

128

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

TAICCTLO = CM_1 | CCIS_® | OUTMOD 1;

TA1CCTL1 = CM_ 1 | CCIS © | SCS | CAP | OUTMOD © | CCIE;

TALCTL = TASSEL 2 | ID @ | MC_2;

In the timer ISR, we need to check first what caused the interrupt. If it was due to a rising edge capture
then we have to take note of current time count in TA1CCR1 since we are using input capture channel
1 of Timerl_A3. Two such time counts are needed to find out the time difference between two
adjacent rising edges. This gives us the time period of the captured incoming waveform. However, we
are not stopping input capture or the timer even after two successive capture events. This is because
we are continuous monitoring the incoming waveform.

vector=TIMER1_A1l_VECTOR
TIMER1_A1_ISR_HOOK(

(TA1IV == TA1IV_TACCR1)
{
end_time = TA1CCR1;
pulse ticks = (end_time - start_time);
start_time = end_time;
TA1CCTL1 &= ~CCIFG;

In the main loop, we are using the Launchpad’s user button to alter TAOCCRO’s value and hence PWM
frequency or period. There are ten different time periods to select. The main code also displays
captured waveform time period vs expected time period on a LCD.

((P1IN & BIT3) == 0)

{
P10UT |= BITO;

((P1IN & BIT3) == 0);

i++;
(i>9)

9;

P10UT &= ~BITO;

TAOCCRO = 9999;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

TAOCCRO = 4999;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

TAOCCRO = 1999;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

>
4:

TAOGCCRO = 999;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

TAOCCRO = 166;
LCD_goto(0, 1);
LCD_putstr("Period/us: 334");

>
6:

TAOCCRO = 1230;
LCD_goto(0, 1);

LCD_putstr("Period/ms:

)

TAOCCRO = 2626;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

>
8:

TAOCCRO = 4579;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

TAGCCRO = 499;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

TAOCCRO = 6964;
LCD_goto(0, 1);
LCD_putstr("Period/ms:

)

}

time_period = (pulse_ticks >> 1);
lcd_print(10, 0, time_period);
delay ms(400);

131

Clock Source Divider Counting Mode
Divider - /1 stop Mode
Divider - /4 ' 16-bit Timer/Counter Continuous Mode
Divider - /8 Clear Up/Down Made
|£| H__‘ Timer_A overflow interrupt enable
Generate Interrupt Handler Code
View All Interrupt Handlers
Timer Capture/Compare Block #0
Desired Timer Period: 20.0 ms Time(r) Period 20 ms
Capture Register: Clock Ticks Time(r) Frequency 50 Hz
Input Selection Capture Mode Made

Cutput Pins

Timer OFF TAD.0 Qutput OFF
P1.1,/TAQ.CCI0A Rising Edge Output Compare/Perig
GMND Falling Edge Input Capture P1.5,/TAQD
VT Both Edges P3.4/TADD
Cutput Mode:

Interrupt Enables
|:| Capture/compare interrupt enable 0

Clock Source

Divider

Divider - /2
Divider - /4

FWh output mode:

4-Toggle v Set OUT bit High/Low

Generate Interrupt Handler Code

View All Interrupt Handlers

Counting Mode
Stop Mode

16-bit Timer/Counter

Up Made

1000.0 kHz

Divider - /8

Clear Up/Down Mode

|£| |J__| Timer_& overflow interrupt enable

Remove Interrupt Handler Code

View All Interrupt Handlers

Timer Capture/Compare Block #0

Desired Timer Period: £5.535

ms Time(r) Period 65.5 ms
Capture Register: D Clock Ticks Time(r) Frequency 153 Hz
Input Selection Capture Mode Made Cutput Pins
No Capture Timer OFF Tal00utputOFF]
P2.0/TA1.CCIOA Cutput Compare/Peric P2.0/TA1.0
P2.3/TA1.CCI0E Falling Edge Input Capture P2,3/TA1.0
GHND Both Edges P3.1/TA1.D
WCC
Cutput Mode:

Interrupt Enables
|:| Capture/compare interrupt enable 0

PWM output mode: 1 - Set

e

Set OUT bit High/Low

Generate Interrupt Handler Code

View All Interrupt Handlers

132

Timer Capture/Compare Block #1

Desired PWM Duty Cycle: o %o
Capture Register: D Clock Ticks
Input Selection Capture Mode Mo de

Output Pins

CC Input OFF Mo Capture Timer OFF
EETFIZFTSNN | Outoput Compare
P2.2/T41.CCHE Falling Edge ﬂm
GND

EBoth Edges
vCe
Cutput Mode: | pwh output mode: 0 - OUT bitvalue ~| [Set OUT bit High/Low
OxFFFF
TxCCRD

TxCCRx / /

Interrupt Enables
Capture/compare interrupt enable 1

Remowve Interrupt Handler Code

View All Interrupt Handlers

Demo

Demo video: https://www.youtube.com/watch?v=CHLkXf8 MgbQ.

133

https://www.youtube.com/watch?v=CHLkXf8MqbQ

Time Delay Generation with Timer Compare-Match Feature

Time-bases and delays can be generated in many different ways, ranging from software techniques to
using a dedicated hardware timer. Between software-based methods and hardware-based ones, the
latter is more efficient and effective. This is because software-based methods rely on wasteful CPU-
intensive loops and other resource-consuming processes. Hardware approaches for generating time-
bases and delays are smart choices because the prime job of a timer is to count ticks or measure time.
Yet within hardware-based methods, there are several techniques and tricks. We can choose between
polling a free running timer or using interrupts to get things done in a more real-time sense. We have
seen previously that we can use timer interrupts to time events. Here we will also see the same but
this time compare-match interrupt is used instead of timer interrupt.

Capture)

EQUO D Set a CCIE.‘D—’ IRQ, Interrupt Service Requested
CAP B—a—

Timer Clock —=

Reset

IRACC, Interrupt RequestAccepted
POR

Code Example

<msp430.h>

GPIO_graceInit()
BCSplus_graceInit(
Timer@_A3_graceInit()
System_graceInit()
WDTplus_graceInit()

vector = TIMER@®_A@_VECTOR
TIMERO_A@_ISR_HOOK(

P1OUT ~= (BIT® | BIT6);
__bic_SR_register_on_exit(LPM@_bits);

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelInit();

134

BCSplus_graceInit();

Timer@_A3_graceInit();

System_graceInit();

WDTplus_gracelInit();

P10UT |= BITO;
P10UT &= ~BIT6;

(1)

__bis_SR_register(LPMO_bits);

{
}s

GPIO_graceInit(

9;

&= ~(BIT6

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_@ | DIVS_@;

(CALBC1_1IMHZ != OxFF)

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S_@ | LFXT1S_© | XCAP_1;

Timer@_A3_graceInit(

TAOCCTLO = CM @ | CCIS © | OUTMOD © | CCIE;

TAOCCRO = 49999;

TAOCTL = TASSEL_2 | ID_3 | MC_1;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL =

WDTPW | WDTHOLD;

=
i
L
15
(U]
=]
|
=|

Simulation

D1

LED-GREEN

Explanation

LED_RED

D2

20
LED_GREEM 0—3_

11

P1.OTAOCLE/ACLECANCAD
P 1mAD.0MATICAT
P 2mAD. 11A2/CA2

P1.5TAQ. O/SCLESASICASTMS

P1_ 75D SDAATICATITDOMDI
RET/NMUSBWTDIO

P20
P21
P22

P1_3ADC0CLK/CAOUTIARNREF-VEREF-ICA3 P23
P14TAD 2ISMCLK/ AANREF+WVEREF+HCA4TCK P2 4

PZ.5

P1.6/TAD. 1/SDOMSCLAG CARNTDIT CLKAIN/FPZ GMAD. 1

XOUTiP2.7
TEST/ISBWTCK

Imlm

=

=

[

[

=

[

=

MIP430G2452

Timer0_A3 is set here for compare-match interval mode. In this mode, Timer0O_A3’s settings are same
as we would do for ordinary timer overflow interrupt. However, the key difference is the interrupt

138

source. Note that in the diagram below timer overflow interrupt is not being used. Timer capture-

compare interrupt is used instead.

Clock Source

Timer Capture/Compare Block #0

Counting Mode

Divider
Divider - /1

Divider - /2 16-bit Timer/Counter
Divider - /4

Clear

Stop Mode

Continuous Mode
Up/Down Mode

|J__| E Timer_A overflow interrupt enable

Generate Interrupt Handler Code

View All Interrupt Handlers

Desired Timer Period:

ms Time(r) Period 400 ms
Capture Register. Clock Ticks Time(r) Frequency 2.5 Hz
Input Selection Capture Mode Mode Cutput Pins
[CCInput OFF | Timer OFF
P1.1/TAD.CCI0A Rising Edge P1.1/TA0.0
GND — Falling —— Input Capture —— P1.5/TAD.0
CC Both Edges
Cutput Mode:

Interrupt Enables
Capture/compare interrupt enable 0

PWM output mode: O - QUT bit value

e

Remove Interrupt Handler Code |

View All Interrupt Handlers

[1Set QUT bit High/Low

The desire time period is set for 400ms or 2.5Hz. At every 400ms interval, a compare-match interrupt
will occur. How this is done? Well the timer is set for up counting and it has an input clock of 125kHz

— 1MHz SMCLK prescaled by 8.

Timer@_A3_graceInit(

TAGCCTLO

TAOCCRO

49999;

CM @ | CCIS_@ | OUTMOD @ | CCIE;

139

TAOCTL = TASSEL 2 | ID 3 | MC_1;

Inside the interrupt function, the LEDs of Launchpad board are toggled. Note that after the occurrence
of the interrupt LPMO is exited.

vector = TIMERO_A@ VECTOR

P1OUT ~= (BIT® | BIT6);
__bic_SR_register_on_exit(LPMO_bits);

In the main, there is no task and in it LPMO is entered. Thus, the process is independent of the main
and is energy efficient.

(1)
{

s

__bis_SR_register(LPMO_bits);

Demo

All =l 767

Demo video: https://youtu.be/Q7z8gEF04UY.

140

https://youtu.be/Q7z8qEF04UY

Watchdog Timer Plus (WDT+)

At present, any commercial/industrial/professional electronic good must pass a number of tests and
obtain some certifications before its introduction to market, most notably CE, FCC, UL and TUV
certifications. This is so as it is imperative that a device pass Electromagnetic Compliance (EMC) test
not just for flawless performance but also for user safety. Hobby electronics projects don’t need these
and most hobbyists don’t fully understand the issues caused by EMI or what causes them. This is why
many simple robots like the line follower robot shown below fail to perform properly in robotics
competitions. Some of them seem to behave erratically while others seem to be unresponsive after
working for some time. If both hardware and software designs are well designed and tested against
harsh conditions, the chances of failure reduce significantly. A hardware designer should consider
proper PCB layout and component placement as well and component selection. Likewise, a
programmer should avoid polling-based solutions, blocking codes, unwanted loops, and should
consider using watchdog timers and other coding tricks. To avoid getting a device into a stalled state,
both hardware and software ends must merge properly and accordingly.

A watchdog timer is basically a fail-safe time. It is a very important module when considering an
embedded-system-based design that is likely to operate in noisy environments or when there is a
probability of its the application firmware to get stuck due to malfunctions. Any programmer would
want to get that stuck up firmware up and running again after recovering from the issue that cause it
to fail. AllMSP430s are equipped with a WDT module and here we will see how it helps us in recovering
it when we simulate an entry into an unanticipated loop.

141

Code Example

<msp430.h>

GPIO_graceInit()
BCSplus_graceInit()3
InterruptVectors_gracelInit(
System_graceInit()
WDTplus_gracelInit()

main(

WDTCTL = WDTPW + WDTHOLD;

GPIO_gracelnit();

BCSplus_graceInit();

System_graceInit();

WDTplus_graceInit();

(1)

P10OUT "= BITO;
_delay cycles(60000);

WDTCTL = WDTPW | WDTCNTCL;

((P1IN & BIT3) == !BIT3)

{
WDTCTL = WDTPW | WDTSSEL;

(1)

P10UT ~= BIT6;
_delay_cycles(45000);

}s

GPIO_graceInit(

BIT3;

BITO | BIT6;

BIT3;

9;

&= ~(BIT6 | BIT7);

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_1MHZ != OxFF) {

DCOCTL = 0x00;

BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_3;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

System_graceInit(

IFG1l &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTSSEL;

Simulation
3
]
& i
q q
q q U1
LED_GREEN O—g: P1.OTAOCLKIACLI/ADICAD P2.0 —g
i P1ATADDIATICAT P21 W
? P1_2/TAD. 1/A2ICAZ P22 T
BUTTON O_Bl P1.3ADC10CLK/CAOUTIAZNREF-WVEREF-/CAS P23 T
R ? P1_4/TAD 2ISMC LK A4NVREF+VEREF+HCALTCK, P2.4 T
Z20R 14_- P1_5TADNSCLK ASICARTMS P25 W
LED_RED Oﬁ P1.68TAD. 1/SDOVSCLAGICASTDIT CLEXIMNFP2. 8/ TAD. 1 W
168 i.T.I'SDI.-'SEINA?J'CA?-'TDD."TDI XOUTIP2.T T
RST O— RET/HMUESBWTDO TEST/ISBEWTCK [

D1

LED-GREEN

() MEP430G2452
LED-RED ™
LED_GREEN {1 A&

LED_RED 0—- B

— —_— —_— C

nnnnna
ertrrfriert

145

Explanation

Unlike previous timer examples, 12 kHz ACLK is used. ACLK is divided by 8 to make it 1.5 kHz low speed
clock source for the WDT+ module. This clock is further prescaled by 32768 to get a WDT+ timeout of
about 22 seconds.

WD T+ Mode Select

Stop Watchdog Timer
Interval Timer Mode

Watchdog Timer

Clock Source Divider]
Interval
High Speed Clock 132768 vl 4578 mHz
21.8¢
Interrupt Enables
|:| WDT+ Interrupt Enable Generate Interrupt Handler Code

View All Interrupt Handlers

WDTCTL = WDTPW | WDTSSEL;

In the main loop, P1.0 toggles without any issue. WDT+ is regularly refreshed. However, when the user
button is pressed, WDT+ is no longer refreshed and P1.6 LED is toggled inside a simulated undesired
loop. P1.0 LED appears to have gotten stuck. This causes the WDT+ to cross maximum timeout limit
and thereby trigger a reset.

P10UT ~= BITO;
_delay_cycles(60000);

WDTCTL = WDTPW | WDTCNTCL;

((P1IN & BIT3) == IBIT3)
{

WDTCTL = WDTPW | WDTSSEL;

146

(1)

P10UT "= BIT6;

_delay_cycles();

In reality, the timeout time may vary due to variations in ACLK time period. In my demo, | noticed this
variation. During that time, | found that ACLK is about 10 kHz instead of 12 kHz.

Demo

A bAdAadlasid

i .""" (4]
I

2'Td
1s8 (19

iV
-5
o

g
§'1d
¥1d

ZS) £'1d

lwen Z2'td -
ayem vid
T03 @'1d

b“ -——

y

L]

%

L]
NOILYTINU3

-

o dyt-
[E RS

"td

Demo video: https://www.youtube.com/watch?v=vYCLeWZZt7U.

147

https://www.youtube.com/watch?v=vYCLeWZZt7U

WDT+ as an Interval Timer

There are cases in which we don’t need the protection feature of WDT+. This leaves with a free timer
which can be used for other jobs. As | said before, Americans think differently than the rest of the
world and here is one proof of that ingenious concept. However, since WDT+ was intended for a
special mission, we cannot expect it to be completely like other timers. For example, it doesn’t have
any capture-compare pin associated with it nor do we have access to its counter. Even with these

limitations, it is still a useful bonus.

Interval Timer Mode

Clock Source Divider

Watchdog Timer

Interval
High Speed Cloc
Low Speed Clock | [1/ 212 ~ 1.95 kHz
512 us
Interrupt Enables
WDT= Interrupt Enable Remove Interrupt Handler Code

View All Interrupt Handlers

A lame demonstration of RTOS concept is demoed here.

148

Code Example

<msp430.h>

GPIO_graceInit()

BCSplus_graceInit()
System_graceInit()
WDTplus_gracelInit()3

vector=WDT_VECTOR
WDT_ISR_HOOK (

state++;

(state >= 3)
{

}

IFG1l &= ~WDTIFG;

state = 0;

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelnit();

BCSplus_graceInit();

System_graceInit();

WDTplus_graceInit();

(1)

(1)
0:

P10UT &= ~BITO;

B

P10UT |= BITO;

B

2:

_delay cycles(1);
S++;
(s > 20000)

{
P10UT ~= BIT6;

s = 0;

((P1IN & BIT3) != BIT3)
{

}

i A= BITO;

GPIO_graceInit(

BIT3;

BITe | BIT6;

9;

&= ~(BIT6 | BIT7);

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_@ | DIVS_@;

(CALBC1_1MHZ != OxFF) {

DCOCTL = ©x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_2;

BCSCTL3 = XT2S @ | LFXT1S_2 | XCAP_1;

System_graceInit(

IFG1 &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

IFG1 &= ~(WDTIFG);

IE1 |= WDTIE;

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTTMSEL | WDTISZ1;

153

Simulation

=
L
L [m]
a4 i}
(_".“ D’:I
(] (]
u = U1
LED_GREEN 0—3: P1.0/TAOCLK/ACLKIAQICAD P2.0 —S
=5 P1.1/TA0. 0/A1/CAT P21 |55
—24 P1.2/TA0.1/A2/CA2 P22 o
BUTTON (O————= P1.3/ADC10CLKICAOUT/A3/VREF-VEREF-/CA3P2 3 [—=
2 —+ P1-4/TAD 2/SMCLKIA4VREF +/VEREF+/CA4/TCKP2 4 [—==
220R —7 P1-5/TA.0/SCLI/ASICASITMS P25 oo
LED_RED O == P1.6/TAD.1/SDO/SCLIAG/CAGTDITCLKIN/P2.6TA.1 f=r=
<=1 PL7/SDISDA/ATICAT/TDO/TDI XOUTIP27 |—=
RST O RST/NMI/SBWTDIO TEST/SBWTCK |——
D2 SP430G2452
LED-RED

Explanation

WDT+ is used here as an interval timer with a time period of 512 microseconds. After every 512
microseconds, there is a WDT+ interrupt.

WDTCTL = WDTPW | WDTTMSEL | WDTIS1;
Inside this interrupt we just change the value of a variable called task.

vector=WDT_VECTOR
WDT_ISR_HOOK (

task++;

(task >= 3)

{
}

IFG1 &= ~WDTIFG;

task = 0;

154

The variable task in the main loop is used to switch between different tasks, each task having same
time frame and priority. This is called a task scheduling.

0:

P10UT &= ~BITO;

B

P10UT |= BITO;

J

_delay_cycles(1);
S++;
(s > 20000)

{
P10OUT ~= BIT6;
s = 0;

((P1IN & BIT3) != BIT3)

{
i A= BITO;

Task 1 lights P1.0 LED based on the logic state of the user button. Task 0 checks the state of the user
button. Task 2 blinks P1.6 LED independent of the other tasks. The total time for the completion of all
these processes is about 1.5 milliseconds — a very short time. In this method, no task waits for other

tasks. The whole process is so fast to human eyes that everything this code does will appear to occur
parallelly.

155

Demo

._ ._.!Nu &m -_HE .
mzc_:_n_.:az mmn

"= (LED2) P16
b A4pin |

e ®
e qJ.

20

Texas pin
INSTRUMENTS _
EP ws

_.rn:__..n__ Pad |

= P1.3 (52)

-

P1.@ (LED1) [W=
P11 WART) (]
=-P1.2 (UARTY q

F P14
P15

i

§

+20 —===A
P24

P22

W94

LaunchPad

DN.m

P2.4 *.

BNwxdgLQerU.

Demo video: https://www.youtube.com/watch?v

156

https://www.youtube.com/watch?v=BNwxdgLQerU

Analogue Frontend Overview
MSP stands for mixed signal processor. Mixed signal means combination of both analogue and digital.
We can, therefore, expect a great deal of cool stuffs when it comes to their analogue features. Chips

vary in features and so do the analogue peripherals. There are various types of analogue peripherals
offered by MSP430s and we can categorize them into four basic categories:

Analogue-to-Digital Converters (ADC)

ADC are used to measure time-varying voltages. They digitize analogue signals by representing them
in quantized binary formats. The most common ADCs in MSP430s are ADC10 and ADC12. These are
Successive Approximation (SAR) ADCs. Both of these ADCs are similar in many aspects except in

resolution. Some MSP430 devices have more advanced high-resolution delta-sigma ADCs like SD16_A
and SD24_A. All MSP430s additionally have internal temperature sensors.

1001

= 1011
0110
0100

Digital-to-Analogue Converters (DAC)

DACs are opposites of ADCs. They give variable voltage output with respect to binary inputs and can
be used to generate waveforms, audio signals, wave patterns, control actuator and power supplies,
etc. 12-bit DACs - DAC12 are available in some advanced MSP430 devices.

1001

1011 e
0110
0100

157

Comparators (COMP)

A comparator compares two analogue voltage levels. This comparison results in an indication of which
signal is at a higher/lower voltage level than the other. In simple terms, it is a one-bit ADC. Though it
may look that a comparator is unnecessary when we have a good built-in ADC, it is otherwise. A
comparator is a very important analogue building block. A whole lot of electronics is based on it.
Examples of such electronics include oscillators, level sensing, VU meters, capacitive touch sensing,
measurement devices, etc. A LC meter is a perfect example. A LC meter is usually based on an
oscillator. This oscillator uses a comparator. Its frequency varies with the L and C components,
oscillating at a fixed frequency with known L and C values. Measuring frequency shifts as a result of
changing L/C values leads us to measure unknown L/C effectively.

W}lo
YaaaV,

Op-Amps (OA)

Some MSP430s are equipped with single supply general-purpose Op-Amps. These can be used like any
other external Op-Amps but they have wide variety of goodies like PGA built-in. We can use them as
comparators (although it is unnecessary in the presence of comparator modules) signal amplifiers,
etc. We can also use them to make filters, oscillators, analogue computers, etc.

g - Ul

In this article only ADC10 and COMP_A+ will be discussed. The rest two will be skipped as the MSP430
chips discussed here don’t have any more hardware other than these.

158

Comp_A+ Module

Apart from ADCs MSP430x2xx devices are equipped with an analogue comparator called Comparator
A+ or simply Comp_A+ module.

CAD
CA1

COMP A+

CAF
[]
CCHB
m CAQUT
$ Set CAIFG
Tau - 2.0ns
o
CAT — 111
CAREFx
P2CA3
P2CA2
BICAT CARSEL
0.5:/CC
i
L 0.25:0CC

Shown above is the block diagram for Comp A+ module. The left most side includes comparator inputs.
A good thing to note is that unlike other micros where comparator pins are generally fixed to some
dedicated 1/Os only, the pins of COMP A+ can be tied with a number of 1/0, adding great flexibility in
design. The purple region in the centre houses reference sources that can be tied to the comparator
inputs. At the comparator output stage (orange area), there is an optional low pass filter. Additionally,
comparator inputs can be shorted to remove any stray static. Use GRACE to explore more features of
Comp A+.

159

Code Example

<msp430.h>
"delay.h"

BCSplus_graceInit()3
GPIO_graceInit()3
Comparator_Aplus_graceInit()
System_graceInit()
WDTplus_gracelInit()

vector=COMPARATORA_VECTOR
COMPARATORA_ISR_HOOK (

P10UT "= BITO;
CACTL2 &= ~CAIFG;

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelInit();

BCSplus_graceInit();

Comparator_Aplus_graceInit();

System_graceInit();

WDTplus_graceInit();
(1)
(CACTL2 & CAOUT)

delay_ms(300);

(1(CACTL2 & CAOUT))

delay ms(100);
}

P10UT ~= BIT6;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS 0;
(CALBC1_8MHZ != 0xFF) {

__delay_cycles(100000);

DCOCTL = 0x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S_@ | LFXT1S_© | XCAP_1;

GPIO_graceInit(

9;

BIT7;

BITO | BIT6 | BIT7;

9;

9;

9;

&= ~(BIT6 | BIT7);

9;

Comparator_Aplus_graceInit(

CACTL1 = CAREF_2 | CAON | CAIES | CAIE;

CACTL2 P2CA3 | P2CA1;

CAPD5;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

Simulation

U1

LED_GREEN O—g: P1.0TAOCLKIACLIIADICAD RETNMUSEWTDIO %O RET
o F1-1/TAD.0IUCATRXDIUCACSOMUATICAT TESTISEWTCHK [——

F1.2TAD. IUCADTXD/UCADSIMOIAZICAZ
F1.3/ADC10CLK/ICAOUTVREF-VEREF-IAZICAS
P1.4/SMCLKUCBOSTE/UCADGLKVREF +\VEREF+A4/ICAHTCK
F1.5TAD. QIUCEOCLKIUCADSTE/ASICAS TMS
F1.8/TAD. 1/UCE0SOMIUCBOSCLIABICABTOUTCLK
=~ P1.7/CACUTIUCEOSIMO/UCBOSDA/ATICATITDOTDI

LED_GREEM
LED_RED

m

3

o

=z
40:Tm
uln

F2.0TA1.0
F2.1/TA1.1
F2.2TA11
P2.3TA1.0
F2.4TA1.2
F2.5TA1.2
D1] XINPZ.BTAD.1
— XOUT/P27

LED-GREEN -
ey e MEF430G2553
<TEXT>

Explanation

For this demo, a MSP430G2553 is used. Launchpad board’s LEDs are used and additionally a
potentiometer (pot) is tied to P1.5. The pot has its ends connected to VDD and GND. The internal

connection is as shown below:

1.8V~ [0.5*vCg—

COMP A+ ——— P1.7/CAOUT

P1.5/CAS —|

The code dictates that Comp A+ interrupt will occur on falling edges only. Now the question is whose
falling edge? Certainly not the inputs. Interrupt will only occur when there is a logic high-low transition
on CAOUT pin — P1.7 here. According to the simplified comparator internal connection shown above,
this transition will occur only when P1.5’s voltage exceeds that of the 1.8V reference. When a

Comp_A+ interrupt occurs, P1.0’s logic state is toggled.

One thing to note here is the fact that though it is not mandatory to clear comparator interrupt flag,

it is wise to clear it after processing the interrupt request.

164

Demo

Demo video: https://www.youtube.com/watch?v=XlzvhpWopil.

165

https://www.youtube.com/watch?v=XIzvhpWopiI

ADC10

In most value-line devices (VLD) like MSP430G2553 and MSP430G2452, ADC12 is not present and the
ADC tasks are accomplished with ADC10 modules.

VaRCR
—— ADC10
__ ADC10SR
REFOLIT
SREF1 B
2 5V REFOM
T | HC Hx={uh
a _
! 1 VRER ../J] 1 an
0 L8 ar 25V |— Miee
‘H“‘J Rafamnca -
Ve Maer Rl x ~
Ao -
NCHx I
SREF1
R
coNsEa Miizg, ADC100SC
MI o000 | SREF2E—Y 1 @ ADCAOON ADCOSSEL
Pt e T ADC 10DV
+ 1
pr wn || [same VR Ve T T T a0
At Mo and . Dividar 01 |— ACLK
gt oitn [Had W ZAR <] .. P I
a7t o - _ . ek
e = el ¢ ADCIOCLK — Mo
1010 . | l T
P BUSY I5SH
12 1100
a1t 1M -~ R
14t 110 SAMPCOM F—
+ —
atst 1 - J4/B/1664 o L
,..-r"‘"' 10 TAD
A N _ “ L_ 11 T2
é,w Sl ADC10SHTx MSC
j'r INCHx=08h T i
| ADCIOMEM |
Deta Trnslar .
Commlar RAM, Faszh, Paipharials
| ADC0SA I >
ADCI0CT _ADCIOTE _ADCI081

Shown above is the simple block diagram of the ADC10 module. ADC10 is a SAR ADC. Highlighted
segments include:

e ADC channel selector (light blue area) — select the highest channel from where the first ADC
conversion starts. An internal counter counts down from this channel all the way down to AO.

e DMA and ADC output (red area) — here we get AD conversion results and can optionally do a
peripheral to memory DMA transfer.

e ADC clock source (purple area) — this is the clock source that runs the ADC.

e ADC trigger source (light green area) — selects what triggers the ADC to start a conversion.

e Reference selectors (orange boxes) — selects ADC’s positive and negative references.

e Built-in signal sources (Deep red area) — includes on-chip temperature sensor, supply voltage
sensing voltage divider, etc.

166

Code Example

<msp430.h>
"delay.h"
"lcd.h"

T_offset

BCSplus_graceInit()5
GPIO_graceInit()5
ADC10_graceInit()5
System_graceInit()
WDTplus_graceInit()5
get_ADC(channel);
get_volt(value);
get_temp(value);
lcd_print(X_pos,

main(

res = 9;
ADC_Value = 0;

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

ADC10_graceInit();

System_graceInit();

WDTplus_graceInit();

LCD_init();
LCD_clear_home();

(1)

((P1IN & BIT3) == 0)

{
P10UT |= BIT6;

((P1IN & BIT3)

P1OUT &= ~BIT6;

(n)
1:

ADC_Value = get ADC(INCH 1);
res = get_volt(ADC Value);

LCD_goto(0, 0);
LCD_putstr("ADC Chol:");
LCD_goto(0, 1);
LCD_putstr("Volts/mv:");

)
2:

ADC_Value = get_ADC(INCH 2);
res = get_volt(ADC Value);

LCD_goto(0, 9);
LCD_putstr("ADC Che2:");
LCD_goto(0, 1);
LCD_putstr("Volts/mv:");

)

ADC_Value = get_ADC(INCH_10);
res = get_temp(get_volt(ADC_Value));

LCD_goto(0, 0);
LCD_putstr("ADC Ch10:");
LCD_goto(0, 1);
LCD_putstr("TC/Deg.C:");

)

}

lcd_print(12, ©, ADC Value);
lcd_print(12, 1, res);
delay ms(200);

GPIO_graceInit(

P10UT = BIT3;

BITO | BIT6;

BIT3;

9;

9;

9;

&= ~(BIT6 | BIT7);

BITO | BIT1 | BIT2 | BIT3 | BIT4 | BITS;

9;

BCSplus_graceInit(

BCSCTL2 = SELM_@ | DIVM_© | DIVS_®;

(CALBC1_1MHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_G;

BCSCTL3 = XT2S_@ | LFXT1S_@ | XCAP_1;

ADC10_graceInit(

ADC10CTLO &= ~ENC;

ADC10CTLO = ADC100N | ADC1OSHT 3 | SREF_0;

ADC10CTL1 = CONSEQ 2 | ADC1@SSEL_3 | ADC1@DIV_3 | SHS 0;

ADC10AEQ = 0x6;

ADC106CTLO |= ENC;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

get_ADC(channel)
P10OUT 7= BITO;
ADC10CTLO &= ~ENC;

ADC10CTL1 &= ~(0xF000);
ADC10CTL1 |= channel;

ADC10CTLO |= ENC;

ADC10CTLO |= ADC10SC;
((ADC1OCTLO® & ADC1OIFG) == 0);

ADC10MEM;

get_volt(value)

Y((value * 3600.0) / 1023.0);

get_temp(value)

Y((((value / 1000.0) - 0.986) / 0.00355) + T_offset);

lcd_print(

chr

LCD_
LCD_

chr

LCD_
LCD_

chr

LCD_
LCD_

chr

LCD_
LCD_

chr = 0x00;

= ((value / 1000) + ©x30);

goto(x_pos, y pos);
putchar(chr);

= (((value / 100) % 10) + 0x30);

goto((x _pos + 1), y pos);
putchar(chr);

= (((value / 10) % 10) + 0x30);

goto((x_pos + 2), y pos);
putchar(chr);

= ((value % 10) + 0x30);

goto((x_pos + 3), y_pos);
putchar(chr);

Simulation

U1

LCD1
LM018L

n [
RST 0% RET/NMISBWTDIO

LED_GREEN

P1 OTAOCLK/ACLKIADICAD

TEST/EBWTCK P1.1/TAQ.0/UCADRXD/UCADSOMIATICAT
P1.2TAD1/UCADTXD/UCADSIMOIAZICAZ
P1.2/ADC10CLKICAQOUT/VREF-VEREF-/AZICAS
P1.4SMCLK/UCBOSTE/UCADCLKNREFHVEREF #AHCASTOK [
P1.5/TAQ.OMUCBOCLK/UCAQSTE/AS/CASITME

P1.8/TAD 1/UCBOSOMIUCBOSCL/AB/ICAS TOUTCLK
P1.7/CAOUT/UCBOSIMO/UCBISDA/ATIGAT TDOTDI [——

F20TA1O
P2ATAT 1
F22TA11
F2.3TA1.0
F24Tat12
F25mA12
KINF2ETAD1
XOUTiP2.7

12
=—(0 LED_RED
3
.4_0 Al
A2 wa
is
e—O EUTTON a2 Q 9E
7 |'44 E 5
O - =l
0O
= LED_GREEN
T
[T}
=10

Xl

MSP430G2553

173

Explanation

ADC10 is set up initially as depicted below:

Megative Reference Voltage

System GMD

External Negative Referenc

Positive Reference Voltage

2.5V

Conversion T ype

Single Conversion
Repeated Conversion

Enable Enable ADC 1.5%
External GPIO Channel Config External Reference |:| Automatic Successive
Fin single Channel Buffered External Referanc Conversion
Sequence of Channel: - Dirive ~
D ;&;ijifpnsce Bufier Diive Sample & Hold Time
Oaorrio [Japc channel o [[] RefBuffer ON only 4% ADC10CLKs
. during Sampling 8 x ADC10CLKs
A ATP1A ADC Ch 11
! O anne [Qutput Internal 16 x ADC10CLES
[~ az/p1.2 [JADC Channel 2 Reference Voltage 64 x ADC10CLKs
o
T
Di;;:.lia (] aDC Channel 3 Ve Ve Sample & Hold Time = 256 us
N)
VeREF- Cock Divider |:| Invert Sample & Hold Signal
[la4/p1.4; []ADC Channel 4 Analog to Digital —
VREF=/ <— Divide by 4 ~
VeREF~ Converter
ADC Clock Sour
[]As/P1.5 []ADC Channel 5 ook oures
ADC1005C
[Jasris [JADC Channel & ACLE
Oarmr [Japc channel 7 |-
|:| Positive External Ref
1000 kHz
[megative External Ref
ADC10MEM
[/] Temperature Sensor] Enable 2's Complement ADC Trigger Sounce
DMeasure Vee & Sampling Rae

ADCI10SC
Timer_A3 Channel 1
Timer A3 Channel 0

Timer A3 Channel 2

0 Samples / Second

Automatic Data Transfer Controller

[JEnabled
Go to Timer

Starting Memory Address 512

[

Memory Block Size

[[] 2 Block Transfer Mode [] Continuously enable data transfer

Interrupt Enables
[JADC10 interrupt enable

Generate Interrupt Handler Code

Wiew &ll Interrupt Handlers

Note that we are not using ADC10 interrupt and enabled two external channels (A1 and A2) although
only the temperature sensor channel is selected for conversion. The internal temperature sensor has
the highest channel number (channel 10) after VDD measurement channel (channel 11). If we also
want to sense Al and A2 along with the internal temperature sensor, we have to select all channels
from channel 0 to channel 10 even when we don’t want the others. This is so because in sequence
scan mode conversion, all channels are scanned from the highest channel to channel 0. The other way
to sense only the desired channels is to sense them one at a time i.e. as single channels. The latter
method is used here.

get_ADC(channel)

P10UT ~= BITO;

ADC10CTLO &= ~ENC;

ADC10CTL1 &= ~(0xF000);
ADC10CTL1 |= channel;

174

ADC10CTLO |= ENC;

ADC10CTL® |= ADC10SC;
((ADC10CTLO & ADC1OIFG) == 0);

ADC10OMEM;

The function above first disables the momentarily and clears channel number or count. Then the
desired channel is chosen. AD conversion is started following ADC restart and we wait for AD
conversion completion. At the end of the conversion ADC result is extracted and returned.

In the main loop, we simply select channel using the Launchpad user button and display ADC data on
a LCD. For ease, | demoed ADC10 using two external channels (A1 and A2) and one internal ADC
channel — the internal temperature sensor.

ADC_Value = get_ ADC(INCH_ 1);
res = get_volt(ADC Value);

LCD_goto(0, 0);
LCD_putstr("ADC Chol:");
LCD_goto(0, 1);
LCD_putstr("Volts/mv:");

)

ADC_Value = get_ADC(INCH_ 2);
res = get_volt(ADC Value);

LCD_goto(@, 0);
LCD_putstr("ADC Che2:");
LCD_goto(0, 1);
LCD_putstr("Volts/mv:");

)

ADC_Value = get_ ADC(INCH_10);
res = get_temp(get_volt(ADC_Value));

LCD_goto(@, 0);
LCD_putstr("ADC Ch1@:");
LCD_goto(0, 1);
LCD_putstr("TC/Deg.C:");

3

}

lcd_print(12, 0, ADC_Value);
lcd_print(12, 1, res);
delay ms(200);

Demo

T E TR s

X8 LoD

176

Demo video: https://www.youtube.com/watch?v=M txQs2ajdk.

177

https://www.youtube.com/watch?v=M_txQs2ajdk

ADC10 Interrupt

In previous example, we didn’t use ADC10 interrupt and the code was based on polling. ADC interrupts
are as important as timer interrupts. We can start an ADC and extract conversion data in an orderly
manner when conversion is complete. No other process waits for the ADC, freeing up the CPU.

Volts
1300 — |Vremp=0.00355(TEMP:)+0.986

1.200 —

1100 —

1.000 —

0.800 —

0.800 —

0.700 I
Celsius

-50 0 50 100
Typical Temperature Sensor Transfer Function

Many present-day microcontrollers have on-chip temperature sensors. While many people think they
are just mere additions, they are not. Such sensors have a number of applications — most notably
correction of ADC readings with temperature drift. Other applications include thermal protection,
temperature comphensations, temperature reference, etc. However, these sensors are not meant to
be as precise and accurate as dedicated temperature sensor chips like LM35 and DS18B20. This makes
them highly unsuitable for measurements of wide range of temperatures and unsuitable for reliable
readings. Shown above is the typical voltage output vs temperature graph of MSP430G2xx devices’
internal temperature sensor. Though it is linear, the word “typical” is indirectly telling us that there
can be some deviations.

In this example, we will see how to read the internal temperature sensor of a MSP430G2xx micro using
ADC10 interrupt.

178

Code Example

<msp430.h>
"delay.h"
"lcd.h"
T_offset -18
ADC_Value = 0;
GPIO_graceInit()5
BCSplus_graceInit();
ADC10_graceInit();
System_graceInit();
WDTplus_graceInit();
get_volt(value);

get_temp(value);
lcd_print(X_pos,

vector = ADC10_VECTOR
ADC10_ISR_HOOK (
P10UT ~= BITO;

ADC_Value = ADC1OMEM;
ADC10CTLO &= ~ADC1OIFG;

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelInit();

BCSplus_graceInit();

ADC10_graceInit();

System_graceInit();

WDTplus_graceInit();
LCD_init();
LCD_clear_home();

LCD_goto(0, 0);
LCD_putstr("ADC Value:"

LCD_goto(0, 1);
LCD_putstr("Tmp/Deg.C:");

(1)

ADC10CTLO |= ADC10SC;
P10UT ~= BIT6;

t = get_volt(ADC Value);
t = get_temp(t);

lcd_print(12, ©, ADC_Value);

led_print(12, 1, t);

delay ms(200);

GPIO_graceInit(

9;

BITO | BIT6;

9;

9;

9;

&= ~(BIT6 | BIT7);

BITe | BIT1 | BIT2 | BIT3 | BIT4

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS 0;

(CALBC1_12MHZ != OxFF)

__delay _cycles(1000);

DCOCTL = 0x00;

BCSCTL1 = CALBC1_12MHZ;
DCOCTL = CALDCO_12MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

ADC10_graceInit(

ADC10CTLO &= ~ENC;

ADC10CTLO = ADC1QIE | ADC1@0N | MSC | ADC10SR | ADC1@SHT 3 | SREF_0;

ADC10CTL1 = CONSEQ 2 | ADC1@SSEL_3 | ADC1@DIV_7 | SHS © | INCH_ 10;

ADC10CTLO |= ENC;

System_graceInit(

IFG1l &= ~OFIFG;

__delay_cycles(600);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

get_volt(value)

Y((value * 3600.0) / 1023.0);

get_temp(value)

Y((((value / 1000.0) - ©.986) / ©.00355) + T_offset);

lcd_print(
chr = 0x00;

chr = ((value / 1000) + 0x30);
LCD_goto(x_pos, y_pos);
LCD_putchar(chr);

chr = (((value / 100) % 10) + 0x30);
LCD_goto((x_pos + 1), y pos);
LCD_putchar(chr);

chr = (((value / 10) % 10) + 0x30);
LCD_goto((x_pos + 2), y pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);
LCD_goto((x_pos + 3), y _pos);
LCD_putchar(chr);

Simulation

Ui

O 186%
RST A7=

=
i
j}
e
[C)
o
[}
=l

LED_RED

R1
330R
<TEXT>

R2
230R
<TEXT>

<TEXT®

D1 D2

LED-RED

USER

“TEXT> m <TEXT=

RET/NMUSBWTDIO
TEST/ISBWTCK

P1.0TAOCLK/ACLK/ADICAD
P1.1/TAD.O/UCADRXDMACAQSOMUIATICAT
P1.27TAD. 1TUCADTADACAOSIMO/AZICAZ

P1.3/ADC10CLK/ CACUTVREF-VEREF-/A3/CA3
P1.4/SMCLKUCBOSTEUCAICLKAREF+HVEREF+A4/CASTCHK
P1.6/TA0.O/UCBOCLK/UCAOSTE/ASICAS TMS
P1.6/TAD.1/UCBOSOMIUCBOSCL/AS/CAG TDLITCLK
P1.7/CAOUT/UCBOSIMO/UCBOSDAATICAT/TDOTDI

T
:g—o BUTTON

¥

LCD1
LMO18L
<TEXT>

:5—0 LED_RED

m14
——=0
G LED_GREEM

B5H82886
T=]=]=]=[=]=

S RIRRRERRER

F2.0TALD

F21TA1A1
P22TA1A1

=2

P2.3TALD

F24TA12

P2.5TAL2

KINP2 8/TAD.1
XouT/P2.7

MEF430G2553
<TEXT=

*Note Proteus VSM cannot simulate internal temperature sensor. The simulation here only shows
connections. The readouts are misleading.

Explanation

Megative Reference YVoltage

Fositive Reference Voltage

Single Conversion
External Megative Referenc 2.5V
Enable Enable ADC 1.5V
External GPIC Channel Config External Reference Automatic Successive
Pin Buffered External Referenc Conversion
gnegi;epnsce Bufier Drive ~ Sample & Held Time
Odaerio [JADC Channel 0 [[] RefBuffer ON only 4% ADC10CLKs
; during Sampling 8 ¥ ADC10CLKs
A1/P1A ADC Ch 11
Lt 0 anne [Outpust Internal 16 x ADC10CLKs
/P, anne Reference Voltage X ADCT0OCLES
[Jazrr2 []4DC Channel 2 " 64 x ADC10CLE
T
Di;f;'?’ []ADC Channel 3 Ve Ve Sample & Hold Time = 21.3 us
VeREF. N [invert Sample & Hold Signal
o] Anal to Digital Cock Divider
A4/P1.4/ ADC Channel 4 Impedance QOhm
VREF=/ nalog to Lignal 4 o i5c py 4 P []
VeREF~ Converter
ADC Clock 5
[]As/P1.5 []ADC Channel 5 ock Soures
ADC1005C
[Jaerre []ADC Channel 6 ACLK
Jamm.7 [J4Dc Channel 7 f\L
|:| Pasitive External Ref
12000 kHz
|:| Megative External Ref
ADCT0MEM
Temperature Sensar [JEnable 2's Complement ADC Trigger Source
|:|Measure VCC & Sampling Rete

Automatic Data Transfer Controller
[Enakled

Starting Memory Address | 512

Memory Block Size 0

[2 Block Transfer Mode [Continuously enable data transfer

Conversion Type

Timer_A3 Channel 1
Timer_A3 Channel O
Timer_A3 Channel 2

0 Samples / Second

Go to Timer

[

Interrupt Enables

ADC‘IDinterrupt enable

Remove Interrupt Handler Code

View All Interrupt Handlers

184

ADC10 setup is similar to the setup we have seen in the last example. However, this time we enabled
ADC10 interrupt as this is an interrupt-based demo.

The ADC ISR is simple. Here we are just toggling P1.0 LED to indicate ADC conversion completion and
clearing ADC interrupt flag after reading ADC data value.

vector = ADC10_VECTOR
ADC10_ISR_HOOK (

P10UT ~= BITO;
ADC_Value = ADC1OMEM;
ADC10CTLO &= ~ADCI1OIFG;

In the main loop, AD conversion process starts using software trigger. The result of this conversion is
extracted from the ADC ISR shown above. The ADC data obtained from the ISR is shown on a LCD. Two
values are shown — actual ADC count and the corresponding temperature against that ADC readout.

ADC10CTLO |= ADC10SC;
P10UT ~= BIT6;

t = get_volt(ADC Value);
t = get_temp(t);

lcd_print(12, ©, ADC Value);
lcd_print(12, 1, t);
delay ms(200);

To extract temperature in degree Celsius, first the ADC count is converted to millivolts and then this
voltage value is translated to temperature value using the voltage vs temperature transfer function
shown earlier. T_offset is an optional constant that is used to negate any offset in temperature
readout.

get_volt(value)

)((value * 3600.0) / 1023.0);

get_temp(value)

Y((((value / 1000.0) - ©.986) / ©.00355) + T_offset);

185

Sl _|d|- ; __?|'||| '_.;m]
L {[1%]

i

e L "'|'|| = " 2 ¥ il -=—.||| == ||| = =" = i

! [|..| 11! |||l :

i
1T T
Tl

Tin '_-|'|n'

sl s
fﬂl: all=

Demo video: https://www.youtube.com/watch?v=X0lI3Vfjfb8.

186

https://www.youtube.com/watch?v=XOlI3Vfjfb8

ADC10 with Direct Memory Access (DMA)

The concept of Direct Memory Access (DMA) or Data Transfer Controller (DTC) is usually found in 32-
bit ARM-Cortex-based micros and in some highly advanced DSP microcontrollers. In recent times, a
few new generation 8-bit and 16-bit devices have emerged with DMA hardware feature. The DMA
hardware may look a bit complicated for those who are new to it but it is practically very simple. Just
consider what you have been doing all these times without DMA. Consider an ADC for an example.
Without DMA, the ADC senses its channel(s) and saves sensed data on an ADC result register waiting
to be read and continue the same operation over and over again. This process involves the CPU very
often as sensing/extracting analog data, storing it and starting ADC conversion all needs CPU’s
attention. Thus, the CPU bus is always busy with these engagements. With DMA the process becomes
more automatic and intelligent. The DMA controller automatically transfers AD conversion data to
specified memory location(s) using its separate data bus. In the whole process the CPU is not involved
much. Conversions take place and the conversion results are immediately transferred. Thus, the
process becomes both autonomous and fast.

Please note that the DMA bus is only available for ADC to memory or in other words peripheral to
memory transfers. It cannot be used for other peripherals like USCI, USI, etc. or for memory-memory
transfers. However, it is not a big issue for now.

Code Example

<msp430.h>
"delay.h"
"SW_I2C.h"
"PCF8574.h"
"lcd.h"

no_of_samples
adc_pointer[no_of_samples];

GPIO_graceInit()
BCSplus_graceInit()
ADC10_gracelnit()
System_graceInit()
WDTplus_graceInit()
lcd_print(X_pos,

S = 0;
adc_avg = 0;

WDTCTL = WDTPW | WDTHOLD;

187

GPIO_gracelInit();

BCSplus_graceInit();

ADC10_gracelInit();

System_gracelInit();

WDTplus_gracelInit();

LCD_init();
LCD_clear_home();

LCD_goto(9, ©);
LCD_putstr("MSP430 ADC + DMA:");

LCD_goto(@, 1);
LCD_putstr("Al1:");

(1)

adc_avg = 9;
P10UT |= BITO;
ADC10CTLO &= ~ENC;
(ADC10CTL1 & BUSY);
ADC10CTLO |= (ENC | ADC10SC);

(s = 9; s < no_of_samples; s++)

{
}

adc_avg += adc_pointer[s];

adc_avg = (adc_avg / no_of_samples);
lcd_print(12, 1, adc_avg);
delay_ms(100);

P10UT &= ~BITO;

delay ms(100);

GPIO_graceInit(

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_@ | DIVS_@;

(CALBC1_8MHZ != OxFF)

__delay_cycles(100000);

DCOCTL = 0x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S O | LFXT1S 2 | XCAP_1;

ADC10_gracelInit(

ADC10CTLO &= ~ENC;

ADC10CTLO® = ADC1@OON | MSC | ADC1@SHT_2 | SREF_0;

ADC10CTL1 = CONSEQ 2 | ADC1@SSEL_© | ADC1@DIV_© | SHS © | INCH 1;

ADC10AEQ = 0x2;

ADC10DTCO = ADC10CT;

ADC10DTC1 no_of_samples;

ADC10SA = (()adc_pointer);

ADC10CTL®

System_graceInit(

IFG1l &= ~OFIFG;

__delay _cycles(400);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_print(
chr = 0;

chr = ((value / 1000) + 0x30);
LCD_goto(x_pos, y_pos);
LCD_putchar(chr);

chr = (((value / 100) % 10) + 0x30);
LCD_goto((x_pos + 1), y_pos);
LCD_putchar(chr);

chr = (((value / 10) % 10) + 0x30);
LCD_goto((x_pos + 2), y_pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);

LCD_goto((x_pos + 3), y pos);
LCD_putchar(chr);

Simulation
LCD1
RVA LMO6L
N=P438 ADC + OMA
U1 7 o Al: FAARA
= pag P1.OMAICLK/ACLKIADICAD [= O L = 0 0w
| d] -
e P1ATAQLDIATICAT s 2oy BE. BhREBR3B88E
2 P2z P 2TAD.1IA2ICH2 | Ril | R2 T ool T 1ol
412 P23 P1.3ADCIOCLKICADUTIAZNVREF-VEREF-ICA3 10k] | 1ok Ao =5fe] el=lsl =
122 P24 P14TAD2ISMCLKIAWVREF HVEREF +CAHTCK i U3
e P1.5TAD.0ISCLKIASICASITMS |-~ | el L. i
A2 XINP2 5TAD.1 P1.6ITAD. 1ISDOISCLIAGICABTDITCLE 13 o o o
L] xouTiPeT P1TISDUSOAATICATTDOMD (=12 soA Pl
A% TESTISBWTCK RETMMUSEWTDIO 12] P
MEF430G2452 73 INT Ei —LO.Q Back Light
L u
e L] A ps L
— = ps [
- 2 a2 p7 &
10k PCFasT4 D1
RE&
& DSW1 Lep
DIPSW 3

LED-RED

193

Explanation

Use Power User setup screen of Grace to configure the DTC. Observe the setup as shown below:

Enable
External GPIO
Pin

Enable ADC
Channel Config

Megative Reference Voltage

System GND

External Megative Referenc

Caoe.0
A1/P11
CJazpiz
Cazey
VREF-/
VeREF-
[Jaapiay
VREF+/
VeREF=
[Jasme1.5
[asr1e

Oare7

[ADC Channel 0
[ADC Channel 1
[ADC Channel 2
[ADC Channel 3

[JADcC Channel 4
[ADC Channel 5

[ADC Channel 6
[ADC Channel 7

|:| Pasitive External Ref
|:| Megative External Ref

|:| Temperature Sensor

|:| Measure VCC

Interrupt Enables
|:| ADCI1D interrupt enable

Here only channel 1 was used. The setup is similar to the first ADC10 example setup. The main
difference is the enabling of the DTC block. Note the starting memory address and the memory block
size. The memory we are talking about here is no other than MSP430’s RAM. Unless you want to assign
a different pointer address, keep it untouched. So why is it pointed at RAM location 512 (0x200) by
default? The answer is the fact that this is first RAM location for our target MSP430G2452

Positive Reference Voltage

2.5V

1.5V

External Reference
Buffered External Referenc

[] Reference Bufier Drive ~
200ksps

[] RefBuffer @M only
curing Sampling

[output Internal
Reference \Voltage

We Wees Sample & Hold Time = 3.2 us
. |:| Invert Sample & Hold Signal
Anal to Diaital Cock Divider
| d Ch
nalog to Digital _{ ...~ "~ mpedance [| ohm
Converter
ADC Clock Source
ADC1005C
ACLK
MCLK
SMCLE
5000 kHz
ADCIOMEM

] Enable 2's Complement

Automatic Data Transfer Controller
Enabled

Starting Memory Address
Memaory Block Size

[2 Block Transfer Mods Continuously enable data transfer

Conversion Type
Single Conversion
Repeated Conversion

Automatic Successive
Caornversion

Sample & Hold Time

4x ADC10CLKs
83 ADC10CLKs
64 x ADCT0CLKS

ADC Trigger Source
& Sampling Rae

Timer_A3 Channel 1
Timer_A3 Channel 0
Timer_A3 Channel 2

0 Samples / Second

Go to Timer

[EEE

Generate Interrupt Handler Code

View All Interrupt Handlers

microcontroller. Check the memory map below:

MSP430G2112 MSP430G2212 MSP430G2312 MSP430G2412
MSP430G2152 MSP430G2252 MSP430G2352 MSP430G2452
Memaory Size 1kB 2kB 4B akB
Main: intermupt vector Flash| OxFFFF to OxFRCO OxFFFF to OxFFCO OxFFFF to OxFFRCO OxFFFF to OxFRCO
Main: code memaory Flash| OxFFFF to DxFCOD 0xFFFF to OxF200 OxFFFF to 0xFO00 DxFFFF to 0xEDDD
Information memory Size 256 Byte 256 Byte 256 Byie 256 Byte
Flash 010FFh to 010006 010FFh to 01000 010FFh to 01000 D10FFh to 010000
RAM Size 128B 2568 266 B 2568
Ox027F to Ox0200 0x02FF to Ox0200 Ox02FF to Ox0200 x02FF to Ox0200
Peripherals 16-bit 01FFh to 01000 0MFFh to 0100h 01FFh to 0100h 01FFh to 01000
8-t OFFh to D10R OFFh to 010K 0FFh to 010h OFFh to 0100
B-bit SFR 0OFh to 00h OFh to DOh OFh to DOR OFh to 00h

194

The block size indicates that number of locations that we will need to store ADC10 data. MSP430s are
16-bit microcontrollers and since ADC10 gives 10-bit data, we need sixteen word-sized (16-bit)
locations to store sixteen ADC samples. These 16 samples are to be averaged.

no_of_samples 16

adc_pointer[no_of_samples];

ADC10DTC1 = no_of_samples;
ADC10SA = (()adc_pointer);

Grace generates the initialization code but the above lines must be edited by the coder.

In the main function, ADC10 is commanded to begin and store conversions. Once all sixteen ADC10
data are captured, they are summed up and averaged. The averaged data is shown on a LCD screen.
Note that ADC10 interrupt is not used and not anywhere in the code the ADCIOMEM register is
directly read. The ADC is read and processed by the DMA, freeing up the CPU for other tasks. The
process is repetitive, automomous and continuous.

adc_avg = 9;
P10UT |= BITe;
ADC10CTLO &= ~ENC;
(ADC10CTL1 & BUSY);
ADC10CTLO |= (ENC | ADC10SC);

(s = 9; s < no_of_samples; s++)

{
}

adc_avg += adc_pointer[s];

adc_avg = (adc_avg / no_of _samples);
lcd_print(12, 1, adc_avg);

delay ms(100);

P10UT &= ~BITO;

delay ms(100);

195

Demo

XXX i

- -

MSP436 ADC +
Al:

Demo video: https://youtu.be/0V2zOTRwPKI.

196

https://youtu.be/0V2zOTRwPKI

Sensing a Sequence of ADC10 Channels with DMA

We have seen in the last segment that how we can compute the average value of an ADC10 channel
without involving the CPU much and using the MSP430’s DMA/DTC controller. The DTC of MSP430s
can be used in many innovative ways. One such way is to sense multiple channels in a row. In this
method, the ADC is basically scanned in an orderly fashion from the coder-specified topmost channel
to the bottommost (channel 0), saving the result of each ADC channel conversion in separate memory
locations. Scanning a sequence of AD channels in this way has many potential applications. Consider
the case of a solar charger controller. With one command you get both the input and output voltages,
and currents quickly from your MSP430 micro. DMA-assisted ADC scanning is perhaps the most
efficient and simple way to sense multiple ADC channels quickly.

Code Example

<msp430.h>
"delay.h"
"SW_I2C.h"
"PCF8574.h"
"lcd.h"

ADC value[2] = {0, 0};

GPIO_graceInit();
BCSplus_graceInit()
ADC10_graceInit()3
System_graceInit();
WDTplus_graceInit()
lcd_print(X_pos,

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_gracelInit();

ADC10_graceInit();

System_graceInit();

WDTplus_graceInit();

LCD_init();

197

LCD_clear_home();

LCD_goto(0, 0);
LCD_putstr("A0:");

LCD_goto(0, 1);
LCD_putstr("A1:");

(1)

ADC10CTLO &= ~ENC;

(ADC10CTL1 & BUSY);
ADC10CTLO |= (ENC | ADC10SC);
lcd_print(12, ©, ADC_value[1]);
lcd_print(12, 1, ADC_value[@]);
delay ms(400);

GPIO_graceInit(

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_8MHZ != OxFF)

__delay_cycles(100000);

DCOCTL = ©x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_G;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

ADC10_graceInit(

ADC10CTLO &= ~ENC;

ADC10CTLO = ADC100ON | MSC | ADC1@SHT 2 | SREF_O;

ADC10CTL1 = CONSEQ 3 | ADC1@SSEL_© | ADC1@DIV_© | SHS © | INCH 1;

ADC10AEQ = 0x3;

ADC1eDTCo ADC10CT;

ADC1eDTC1 2;

ADC10SA = (()ADC_value);

ADC10CTLO |= ENC;

System_graceInit(

IFG1 &= ~OFIFG;

__delay_cycles(400);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_print(
chr = 0;

chr = ((value / 1000) + 0x30);
LCD_goto(x_pos, y_pos);
LCD_putchar(chr);

chr = (((value / 100) % 10) + 0x30);
LCD_goto((x_pos + 1), y_pos);
LCD_putchar(chr);

chr = (((value / 10) % 10) + 0x30);
LCD_goto((x_pos + 2), y_pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);
LCD_goto((x_pos + 3), y _pos);
LCD_putchar(chr);

LCD1
LMO16L
U1 _
o F1.O/TADCLIACLKIAQICAD [—= 99U 12 o wmeoon
T P21 P11/ TAD.Q/AT/CAT 2 R1 R2 === e w coooooo
< P22 P1.2/TAD. 1/A2ICA2 [——
<7 F23 P13/ADCI0CLKICAOUTIASIVREF-IVEREF-ICA3 [—— 10k 10k vHr-l #|ofjo| of =f o o] =]
15| P24 P1ATAQ.ZISMCLKIA4NREF+VEREF+HCASTCK [—— U3
<5 P28 P1.5TAD/SCLKIASICASITMS [~ o .
o XINP2.8ITAD.1P1 . 6/TAL. 1/SDO/SCLIABICABITDITOLK [—=] ScL FO [—
1 ¥outPz7 P1.7ISDUSDAATICAT TDOMDI [—= SDA P1—
—— TESTISBWTCK RETINMUSEWTDIO [—— i3 | — P2 [—
MSP430G2452 R3 | U gﬁ 5O BackLight
B } ; AD PS5 :f
= 3 | A il I
A2 F7
10k
PCFa574
| o o
L
4 DSWA1
DIFSW_3
[]
“A

202

Explanation

Except some minor differences, the Grace setup here is same as the one used in the DMA example.
The first difference is the Sequence of Channels selection, second is the number of ADC channels and

finally the size of memory block.

MNegative Reference YVoltage

System GMD

External Megative Referenc

Enable Enable ADC
External GRIO Channel Config
Fin Single Channel
Sequence of Channeld
[~ aoPo [ADC Channel 0
& a1/P1.1 [aDc Channel 1
CJazprz [Japc channel 2
Clazr1zy [JADC Channel 3
VREF-/
VeREF-
Clagray []ADC Channel 4
VREF+/
VeREF+
[Jas/P1s [Japc channel 5
[Jaer1e [JaDC Channel &
Jame7 [JaDc Channel 7
[Positive External Ref
[Megative External Ref
|:|Temperature Sensar
[IMeasure vCc

Interrupt Enables
[JADC10 interrupt enable

Positive Reference Voltage

2.5V

1.5V

External Reference
Buffered External Referenc

|:| Reference Bufier Drive ~
200ksps
[] RefBuffer OM only

during Sampling
[output Internal
Reference YVoltage
Wae Wae
Anal to Digital Clock Divider
na‘og to Ligra <|— Divide by 1
Converter
ADC10MEM

[JEnable 2's Complement

Conversion Type
Single Canversion
Repeated Conversion

Automatic Successive
Conversion

Sample & Hold Time

4x ADCT0CLEKs
8 x ADCIOCLKS

16 x ADC10CLES

64 x ADCT0CLKS

Sample & Hold Time = 3.2 us
|:| Invert Sample & Hold Signal

Impedance I:I Ohm

ADC Clock Source

ADC1005C
ACLE
MCLK
SMCLE
5000 kHz

Enabled

Automatic Data Transfer Controller

Starting Memory Address
Memory Block Size

[] 2 Block Transfer Mode Continuously enable data transfer

ADC Trigger Source
& Sanpling Rae

Timer_A3 Channel 1
Timer_A3 Channel 0
Timer_A3 Channel 2

0 Samples / Second

[

Generate Interrupt Handler Code

View All Interrupt Handlers

In the main, most of the things are same as in the DMA example. Since two channels are read, two
memory locations store individual ADC data. Scanning starts from topmost channel to the bottommost
and so the bottommost memory location will hold the data of the topmost channel and vice versa. In
short, the memory locations are flipped with respect to ADC channels.

ADC10CTLO &= ~ENC;
(ADC10CTL1 & BUSY);
ADC10CTLO |= (ENC | ADC10SC);

lcd_print(12, ©, ADC_value[1]
lcd_print(12, 1, ADC_value[©]

)5
)5

delay_ms(400);

203

Demo

EXEEENN

Demo video: https://youtu.be/ZSfkjiQHgrKs.

204

https://youtu.be/ZSfkjQHgrKs

Sensing Multiple Out-of-Sequence ADC10 Channels with DMA

Due to several obligations and design constrains, we may often fall in situations where we would not
be able to enjoy the sequential DTC-assisted ADC scanning feature demonstrated in the previous
section. ADC channels may not be in an orderly sequence. Still we can apply similar techniques as in
ADC scanning but certain things are needed to be kept in mind in such cases.

Code Example

<msp430.h>
"delay.h"
"SW_I2C.h"
"PCF8574.h"
"lcd.h"

no_of_channels 12
ADC_value[no_of channels];

GPIO_graceInit()
BCSplus_graceInit()
ADC10_graceInit()
System_graceInit()3
WDTplus_gracelInit()3
lcd_print(X_pos,

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

ADC10_gracelInit();

System_graceInit();

WDTplus_gracelInit();

LCD_init();
LCD_clear_home();

205

(1)

ADC10CTLO &= ~ENC;
(ADC10CTL1 & BUSY);
ADC10CTLO |= (ENC | ADC10SC);

LCD_goto(0, 9);
LCD_putstr("A03:");
lcd_print(12, 0, ADC_value[8]);
LCD_goto(0, 1);
LCD_putstr("Al11:");
lcd_print(12, 1, ADC value[9]);

P10OUT ~= BITO;
delay ms(900);

ADC1OCTLO &= ~ENC;
(ADC10CTL1 & BUSY);
ADC16CTL® |= (ENC | ADC10SC);

LCD_goto(0, 0);
LCD_putstr("A00:");
lcd_print(12, ©, ADC_value[11]);
LCD_goto(0, 1);
LCD_putstr("A10:");
lcd_print(12, 1, ADC_value[1l]);

P10UT ~= BITO;
delay ms(9090);

GPIO_gracelInit(

9;

&= ~(BIT6

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_@ | DIVS_@;

(CALBC1_8MHZ != OxFF)

__delay_cycles(100000);

DCOCTL = 0x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S O | LFXT1S 2 | XCAP_1;

ADC10_gracelInit(

ADC10CTLO &= ~ENC;

ADC10CTLO® = ADC1@OON | MSC | ADC1@SHT_2 | SREF_0;

ADC10CTL1 = CONSEQ 3 | ADC1@SSEL_© | ADC1eDIV_© | SHS_© | INCH_11;

ADC10AEQ = 0x8;

ADC10DTCo ADC10CT;

ADC1eDTC1 12;

ADC10SA =)ADC_value);

ADC10CTL®

System_graceInit(

IFG1l &= ~OFIFG;

__delay_cycles(400);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_print(
chr = 0;

chr = ((value / 1000) + 0x30);
LCD_goto(x_pos, y_pos);
LCD_putchar(chr);

chr = (((value / 100) % 10) + 0x30);
LCD_goto((x_pos + 1), y pos);
LCD_putchar(chr);

chr = (((value / 10) % 10) + 0x30);
LCD_goto((x_pos + 2), y pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);
LCD_goto((x_pos + 3), y _pos);
LCD_putchar(chr);

Simulation

LCD1
LMO16L
RV1
U1
s
o P1.OMADCLIKIACLKIAQICAD DO 2 b mmanon
S i F1_2TAD 1/A2ICA2
- P23 P1 3/ADC10CLKICAOUTIAIVREF-VEREF-ICA3 [—= 10| | 1ok -H.-I <|slo]| edfof <
2 P2 4 P1.4/TA0 2/SMCLK/A4VREF+VEREFHCAHTCK [— U3
Lirs P15TAD DISCLKIASICASITMS [~ e .
2 XINIP2 6TA 1P1.6TAC. 1/SDOISCLIAGICAGITDITCLK [— H{sc. ol
L1 xourP27 P1.7/SDISDAATICATITDOTD! [—12 SDA P1[—2
1 TEsTISBWTCK RET/NMUSEWTDIO |—=2 | — F2 [—
MSF430G2452 R2 | gf Q) Back Light
R4} 1 a0 F5
S £ a1 F8
} A2 F7
10k
FCFas7a
| oy oY
@ o DSW1
DIFSW_3
®
A

In the last example, the ADC channels that were scanned were in an order. Here, however, the story
is different but the concept is the same.

Megative Reference Voltage Postive Reference “oltage Conversion Type
Single Conversion
25
Enable Enable ADC 1.5V
External GPIO Channel Config External Reference Automatic Successive
Fin si ch] Buffered External Referenc Conversion
D ?Degir:pnsce Bufkr Drive ~ Sample & Hold Time
[Jaopi0 [ADC channel 0] RefBuffer ON only 4% ADC10CLKs
p during Sampling 5 x ADCTOCLKS
A1/P1A | ADC Ch 11
Oav anne [Output Internal 16 3 ADC10CLKs
DAZIPLZ ADC Channel 2 Reference Voltage B84 x ADCT0CLKs
T
3:;‘:3* [/1ADC Channel 3 Ve Vae Sample & Hold Time = 3.2 us
VeREF. dock Divid [Jinvert Sample & Hold Signal
ock Divider
A4/P1L4, [V ADC Channel 4 igi Imped Oh
DVR«EF_; & Analog to Digital { () ‘. " | impedance [Jonm
VeREF~ Converter
ADC Clock S
[]AS/P1.5 [ADC Channel5 ock Soures
Caerie [ADC Channel 6
Oazme.7 [ADC Channel 7
Pasitive External Ref
-\/_ 5000 kHz
Negative External Ref
ADC10MEM
[¥] Temperature Sensar] Enable 2's Complement ADC Trigger Source
[Measure veC & Sampling Rae
ADCI05C
Timer_A3 Channel 1
-—\; Timer_A3 Channel 0
- Timer_A3 Channel 2
Automatic Data Transfer Controller -
0 Samples / Second
Enabled
Go to Timer
Starting Memory Acddress
060K

Memory Block Size

[2 Block Transfer Mode Continuously enable data transfer

Interrupt Enables
DADC1D interrupt enable Generate Interrupt Handler Code

Wiew All Interrupt Handlers

211

Note that all channels are enabled since the topmost channel we have measured here is the Measure
VCC channel but intentionally the memory block size is set 1 instead of 12 and only one external
channel is enabled. Well, there are some proof-of-concepts to show. The first proof-of-concept is the
fact that since we have to set memory block size and memory pointer on our own in the initialization
code, it doesn’t matter what these values are in Grace. Secondly, only external channel A3 is sensed
since its external I/0O is enabled. The rest of the external channels are ignored. This is why AO reads
floating values when the code runs because its external I/O to ADC is disconnected and further more
it is used to blink the onboard Launchpad LED connected with it. Channel A10 (internal temperature
sensor) and A1l (internal VCC sensor) are internal channels and so are not dependent on external
I/0s. These channels read as they should. Despite scanning all channels, we can decide which ones we
need. Here | demoed sensing channels AO, A3, A10 and Al1l. Note that these channels are out of a
regular or orderly sequence, hence the name of the topic Sensing Multiple Out-of-Sequence ADC10
Channels with DMA.

Demo

Demo video: https://youtu.be/75lyIXIVirY.

212

https://youtu.be/75IyIXlVtrY

Communication Overview

Most MSP430 micros are equipped with Universal Serial Interface (USI) and Universal Serial
Communication Interface (USCI) modules. Some devices have Universal Asynchronous Receiver-
Transmitter (UART) modules. These interfaces are needed to communicate with external devices like
sensors, actuators, drives, other microcontrollers or onboard devices, etc and are responsible for
handling the most commonly used serial communications like Universal Asynchronous Receiver-
Transmitter (UART), Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (12C). Also, there are
other additional more robust communication interfaces like Controller Area Network (CAN), Local
Interconnect Network (LIN), Infrared Data Association (IrDA) and RS-485. The latter communications
will not be discussed here as they are advanced and are basically extension of the aforementioned
serial communications. Each method communication has its own advantages and disadvantages. In
the table below, some individual basics of various methods of communications are shown:

Industrial differential two wire

communication with more than

one master support

We can also use software-based methods instead of using dedicated hardware to replicate some of
these communications but these methods are not efficient as they consume resources like clock
cycles, memories and often employ polling strategies. However, in the absence of dedicated
hardware, software methods are the last resorts.

213

USI vs USCI - Which one is better?

USI and USCI are both hardware-based serial communication handlers but the question which one is
better lurks in every beginner’s mind. Although both modules do same tasks, they are not identical.

e Universal Serial Interface (USI)
Mainly USl is intended for 12C and SPI communications. Technically speaking, USl is a pumped-
up shift register that does all the bit-banging in hardware that a programmer would have
done in software end. Apart from its aforementioned shift register, it has clock generator, bit
counter and few extra assists for I2C communications.

In the firmware end, we need to load the bit counter with the number of bits to transfer. This
bit counter always counts down to zero. During transmission, the shift register is loaded with
the value that is to be transmitted while during reception, the shift register is read back once
the bit counter hits zero.

e Universal Serial Communication Interface (USCI)
USCI, on the other hand, is a highly sophisticated module that is intended for most forms of
serial communications. USCI is more advanced than USI in terms of hardware. It has a one-
byte I/0 buffer and DMA transfer capability for higher throughput. USCI can be subcategorized
in two types:

¢ Asynchronous USCI (USCI A)
It is used for UART, SPI, LIN and IRDA as it can detect the baud rate of an incoming
signal. This type is most common.

¢ Synchronous USCI (USCI B)
This type can handle synchronous communications like SPI and 12C that need a
clock signal. The coolest part is the fact that the full 12C communication protocol
as per NXP is implemented in 12C mode with an in-built 12C state machine.

Both USI and USCI support master-slave modes although most of the times we don’t need slave
modes. This is because most of the times we do not need communicate with multiple microcontrollers
on board. 12C and SPI are usually used to establish communication between external devices (sensors
and drivers) and a host microcontroller. UART, on the other hand, is mainly used to communicate with
a computer. It is also used for long-distance communications like RS232, RS485, LIN and IrDA.

Software-based Communication

When USI/USCI are absent or used up, we have to stick to software-based methods to emulate SPI,
I2C and UART. They are slow and may require the aid of other hardware like timers and external
interrupts. Software methods add considerable amounts of coding overhead and consume both CPU
cycles as well as memories. We can’t also use them for communications that are more complex than
I12C, SPI or UART. It is better to avoid them whenever possible. Still however, these methods help in
learning the details of UART, 12C and SPI communications to a great extent. A good thing about
software solutions is the fact that we can virtually create unlimited amounts of communication ports.

214

USI SPI — Interfacing MAX7219

SPI communication is an onboard synchronous communication method. It is used for communicating
with a number of devices including sensors, TFT displays, port expanders, PWM controller ICs, memory
chips, addon support devices and even other microcontrollers.

In a SPI communication bus, there is always one master device which generates clock and select
slave(s). Master sends commands to slave(s). Slave(s) responds to commands sent by the master. The
number of slaves in a SPI bus is virtually unlimited provided that there is no issue with slave selection
hardware and bus speed. Except the chip selection pin, all SPI devices in a bus can share the same
clock and data pins.

Typical full-duplex SPI bus requires four basic I/O pins:

e Master-Out-Slave-In (MOSI) connected to Slave-Data-In (SDI).

e Master-In-Slave-Out (MIS0) connected to Slave-Data-Out (SDO).
e Serial Clock (SCLK) connected to Slave Clock (SCK).

e Slave Select (SS) connected to Chip Select (CS).

The diagram below illustrates SPI communication with a MSP430 micro. The green labels are for slaves
while the red ones are for the master or host MSP430 micro.

CS1/ss1
CS2/sS2
CSn/SSn

MSP430

Microcontroller

SPI Communication Bus

(O E— () E— SCK

-'_ SDI

sDO

SCLK sy

SPI Device
n

SPI Device
2

SPI Device
1

In general, if you wish to know more about SPI bus here are some cool links:

e https://learn.mikroe.com/spi-bus/

e https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

e http://wwl.microchip.com/downloads/en/devicedoc/spi.pdf
e http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus/
e https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi

e http://www.circuitbasics.com/basics-of-the-spi-communication-protocol/

215

https://learn.mikroe.com/spi-bus/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf
http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus/
https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi
http://www.circuitbasics.com/basics-of-the-spi-communication-protocol/

Code Example

SPI.h

<msp430.h>

SPI_transfer(

data_out);

SPl.c

"SPI.h"

SPI_transfer(
data_in = 0;

USISRL data_out;
USICNT = 8;

(! (USIIFG & USICTL1));
data_in = USISRL;

data_in;

MAX72xx.h

<MSP430.h>
"delay.h"
"SPI.h"

HW_SPI_DIR
HW_SPI_OUT
HW_SPI_IN

CS_pin

CS_DIR_OUT()
CS_DIR_IN()

CS_HIGH()
CS_LOW()

NOP

DIGO

DIG1

DIG2

DIG3

DIG4

DIG5

DIG6

DIG7
decode_mode_reg
intensity_reg

data_out)

P1DIR
P10UT
P1IN

BIT4

{HW_SPI_DIR |=
{HW_SPI_DIR &=

{HW_SPI_OUT |=
{HW_SPI_OUT &=

0x00
oxo1
0x02
0x03
ox04
0x05
0x06
ox07
0x08
0x09
OX0A

CS_pin;}
~CS_pin;}

CS_pin;}
~CS_pin;}

216

scan_limit_reg
shutdown_reg
display_test_reg

shutdown_cmd
run_cmd

no_test_cmd

test_cmd

MAX72xx_init()3
MAX72xx_write(address,

MAX72xx.c

"MAX72xx.h"

MAX72xx_init(

CS_DIR_OUT();
CS_HIGH();

MAX72xx_write(shutdown_reg, run_cmd);
MAX72xx_write(decode_mode_reg, 0x00);
MAX72xx_write(scan_limit_reg, 0x07);
MAX72xx_write(intensity reg, 0x04);
MAX72xx_write(display test reg, test_cmd);

delay ms(100);
MAX72xx_write(display_test_reg, no_test_cmd);

MAX72xx_write(address,
CS_LOW();

SPI_transfer(address);
SPI_transfer(value);

CS_HIGH();

<msp430.h>
<string.h>
"delay.h"
"SPI.h"
"MAX72xx.h"

GPIO_graceInit();
BCSplus_graceInit(
USI_graceInit()
System_graceInit()
WDTplus_gracelInit()

value);

9;
9;

temp[8];
text[80] =

0x04, O0x08, 0x08,
ox42, Ox7E, OX7E,
0x42, 0x42, 0x42,
Ox1A, Ox1A, Ox1A,
ox42, 0x42, ox42,
ox12, ©x12, ox12,
Ox1A, Ox1A, Ox1A,
OX7E, Ox4A, Ox4A,
0x04, 0xe8, 0x19,
ox12, ©x12, ox12,

symbols[56] =

0x55, OxAA, ©Ox55, OxAA, 0Ox55,
ox3C, 0x42, 0x95, OxAl, OxA1l,
OxFF, ©xC3, oxBD, OxA5, OxAS5,
0x99, Ox5A, 0x3C, OxFF, OxFF,
ox1C, ©0x22, 0Ox41, 0x86, 0x86,
OxDF, OxDF, ©xD8, OxFF, OxFF,
OxAA, Ox55, OxAA, 0Ox55, OxAA,

}s

memset (temp, 0x00, (temp));

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

USI_gracelInit();

System_graceInit();

WDTplus_graceInit();

MAX72xx_init();

(1)

95 J < 85 j++)
temp[j] = text[(i + j)1;

MAX72xx_write((j + 1), temp[j]);
delay ms(6);

j =05 J <565 3=(J+8))
(i =9; 1< 8; i++)

{
MAX72xx_write((i + 1), symbols[(i + j)1);

}

delay _ms(2000);

GPIO_graceInit(

9;

BIT5 | BIT6;

BIT4;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS 0;

(CALBC1_1IMHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

USI_graceInit(

USICTLO |= USISWRST;

USICTLO = USIPE6 | USIPE5 | USIMST | USIOE | USISWRST;

USICKCTL = USIDIV_3 | USISSEL_2 | USICKPL;

USICTLO &= ~USISWRST;

System_graceInit(

IFG1l &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

222

Simulation

LED_GREEN
LED_RED

P20 P1.0/TAOCLKIACLK/ADICAO |5 O LED_GREEN
P2.1 P1A/TAD OIANCAT
P22 P1.2TAD.V/AICA ==
P2.3 P1.JADC10CLK/CAOUT/A3VREF -VEREF-/CA3 |= { BUTTON
P2.4P1.4/TAQ 2/SMCLKIA4VREF +VEREF +/CA4TCK [=2—
P25 P1.5/TAD O/SCLKIASICASITMS (-
XINIP2 6/TAQ. P1 6TAD. 'SDO/SCUAB/CASITDITCLK (== QO LED_RED
XOUT/P2.7 P17/SDUSDA/ATICATITOONDI |42
TESTISBWTCK RST/ TDIO O RST
MSP430G2452 U2
EX im
DIN
122 Loao
CLK
A a
— - | u
- B
- © .
Db—
a BS uise
b= s e 1)
2k2 ~— DouT
. MAXT218
AT

Explanation

USI-based SPI is best realized with a MAX7219-based dot-matrix display and this demo is based on it.
USI is setup for SPI mode. Every time USI is initialized it is disabled first just like other hardware. We,
then, proceed to setup the SPI data transfer properties like SPI clock speed, device role, mode of

operation, etc. Finally, USI is enabled for data transfer over SPI bus.

SCLK
Us < > P1.5/5CLK
Clock source =01
SPIMode L~ [opiinput oFF
2Ll e |_|—|_|—|_|— Master mo ~ SO0
BRCLK —<__>— P1.6/SDOySCL
Cycle# 1 2 x 8
MSB fil e
—- -
Bitrate = | 125000 bps v ter=28us
Clock Phase: | Data is change ~ Clock Polartty: | inactive state i

Interrupt Enables

[counter Interrupt enable Generate Interrupt Handler Code

Wiew All Interrupt Handlers

223

USICTL® |= USISWRST;

USICTLO = USIPE6 | USIPES5 | USIMST | USIOE | USISWRST;

USICKCTL = USIDIV_3 | USISSEL_2 | USICKPL;

USICTLO &= ~USISWRST;

The function below does the actual SPI data transfer. It both transmits and receives data over SPI bus.
Data to be transmitted is loaded in USISRL register. USI bit counter is loaded with the number of bits
to transfer, here 8. In the hardware end, this counter is decremented with data being shifted and clock
signal being generated on each decrement. Since SPI bus is a circular bus, reading USISRL register back
returns received data. Note slave select pin is not used here as it is used in MAX7219 source file.

SPI_transfer(data_out)
data_in = 0;

USISRL = data_out;
USICNT = 8;

(!'(USIIFG & USICTL1));
data_in = USISRL;

data_in;

The rest of the code is the implementation of MAX7219 driver and how to use it to create patterns in
the dot-matrix display. When started, the display scrolls the letters of the word “MICROARENA” - the

224

https://www.facebook.com/MicroArena/

name of my Facebook page followed by some symbols. | assume that readers will understand what |

have done here.

Demo

FY3jtRD8FCA.

Demo video: https://www.youtube.com/watch?v

225

https://www.youtube.com/watch?v=FY3jtRD8FCA

USCI SPI — Interfacing MPL115A1 Atmospheric Pressure Sensor

We have already seen that MSP430’s USI module can be used to implement both 12C and SPI
communication platforms. However, there will be times we will have to use USCI modules. USCl is a
bit complicated and is a bit difficult to use in simple terms. Here in this article, however, | kept things
simple and projected ways to use this module simply. Four examples of USCI module in 12C nd SPI
modes will be presented in this article. The first one will demo how to interface a MSP430 device with
a MPL115A1 atmospheric pressure sensor in a full-duplex SPI bus. Full-duplex SPI bus is needed the
most when interfacing sensors, RTCs, SPI-based memory chips, SD cards, etc.

Racaive Stals Machina

Racaive Bufer UG x RXBUF

+ UC=S0MI
i | 0 o
L == Racewve Shifl Ragsiar | Q
UCMSBE UCTBIT
1 -
UCSS5ELx
Bl Dok Ganarator
UCxERx UCCEPH UCCHPL
Ll 18 [-
ACLE e UL
- oy sy T B | | Clock Directon,
SMCLK * dlnaDiin | Phase and P alarity L
SMCLK
UCMSE UCTBIT
I“ UCxSIMO
== Transmil Shifl Regster ——
+ UCMODEx
UCxS TE
Tran=mi Bufler IS xTXBUF :
Tranzmi Enakis
Contra _‘Dp Sai UCFE
_ Trnzmit Slats Machina

- Sal UCaTHIFG

Code Example

HW_SPLh

<msp430.h>

HW_SPI_init()

SPI_write(tx_data);
SPI_read()
SPI_transfer(tx_data);

226

HW_SPI.c

"HW_SPI.h"

HW_SPI_init()
UCAOCTL1 |= UCSWRST;
UCAGCTL® = UCCKPH | UCMSB | UCMST | UCMODE_1 | UCSYNC;
UCAGCTL1 = UCSSEL_2 | UCSWRST;

UCAGBRO = 8;
UCAOCTL1 &= ~UCSWRST;

SPI_write(tx_data)
(' (IFG2 & UCAOTXIFG));

UCAOTXBUF = tx_data;
(UCAQSTAT & UCBUSY);

SPI_read()
rx_data = 0;
(! (IFG2 & UCAORXIFG));
rx_data = UCAORXBUF;
(UCAGSTAT & UCBUSY);

rx_data;

SPI_transfer(tx_data)
rx_data = 0;
(T"(IFG2 & UCAOTXIFG));

UCAGTXBUF = tx_data;
(UCA@STAT & UCBUSY);

(T(IFG2 & UCAORXIFG));
rx_data = UCAORXBUF;
(UCAGSTAT & UCBUSY);

rx_data;

MPL115A1.h

<msp430.h>
"delay.h"
"HW_SPI.h"

LOW
HIGH

PRESH
PRESL
TEMPH
TEMPL

A@_H
AQ_L
B1_H
B1_L
B2_H
B2_L
C12_H
C12_L

conv_cmd

MPL115A1_CSN_PORT_OUT
MPL115A1_SDN_PORT_OUT

MPL115A1_CSN_PORT_DIR
MPL115A1_SDN_PORT_DIR

MPL115A1_SDN_pin
MPL115A1_CSN_pin

MPL115A1_SDN_HIGH() P20UT |= MPL115A1_SDN_pin
MPL115A1_SDN_LOW() P20UT &= ~MPL115A1_SDN_pin

MPL115A1_CSN_HIGH() P20UT |= MPL115A1_CSN_pin
MPL115A1_CSN_LOW() P20UT &= ~MPL115A1_CSN_pin

AQ;
B1;
B2;
C12;
}coefficients;

MPL115A1_init();

MPL115A1_read(address);
MPL115A1_write(address,
MPL115A1_get_coefficients()
MPL115A1_get_bytes (*hb,

address);
MPL115A1 get_ data(*pres, *temp);

MPL115A1.c

"MPL115A1.h"

MPL115A1_init(

MPL115A1_SDN_PORT DIR |= MPL115A1_SDN_pin;
MPL115A1_CSN_PORT DIR |= MPL115A1_CSN_pin;

MPL115A1_SDN_HIGH();
MPL115A1_CSN_HIGH();
HW_SPI_init();
MPL115A1_get_coefficients();

MPL115A1_read(address)
value = 0;
MPL115A1_CSN_LOW();
delay ms(3);
SPI_write(address);
value = SPI_read();

value = SPI_transfer(address);
MPL115A1 CSN_HIGH();

value;

MPL115A1 _write(address,

MPL115A1_CSN_LOW();
delay_ms(3);
SPI_write((address & 0x7F));
SPI_write(value);
MPL115A1_CSN_HIGH();

MPL115A1_get_coefficients(

hb 0;
1b = 0;

MPL115A1_get_bytes(&hb, &1lb, A0 _H);
coefficients.A@ = ((hb << 5) + (1b >> 3) + ((1b & 9x07) / 8.0));

MPL115A1_get_bytes(&hb, &lb, B1_H);
coefficients.Bl = (((((hb & ©x1F) * 0x0100) + 1lb) / 8192.0) - 3.0);

MPL115A1_get_bytes(&hb, &1lb, B2 _H);
coefficients.B2 = (((((hb - ©x80) << 8) + 1lb) / 16384.0) - 2.0);

MPL115A1_get_bytes(&hb, &1lb, C12 H);
coefficients.C12 = (((hb * ©x100) + 1b) / 16777216.0);

MPL115A1_get_bytes(*hb,

l1ls) JMPL115A1_read(address));
*1lb = JMPL115A1_read((address + 2))),;

address)

MPL115A1_get_data(

hb =
1b =

Padc
Tadc

MPL115A1_write(conv_cmd, 9);

MPL115A1_get_bytes(&hb, &1lb, PRESH);
Padc = (((hb << 8) + 1b) >> 6);

MPL115A1_get bytes(&hb, &lb, TEMPH);
Tadc = (((hb << 8) + 1lb) >> 6);

*pres = (coefficients.A@ + ((coefficients.Bl + (coefficients.C12 * Tadc)) *
Padc) + (coefficients.B2 * Tadc));
*pres = (((*pres * 65.0) / 1023.0) + 50.0);

*temp = (30.0 + ((Tadc - 472) / (-5.35)));

<msp430.h>
"delay.h"
"HW_SPI.h"
"SW_I2C.h"
"PCF8574.h"
"lcd.h"
"MPL115A1.h"

symbol[8] =

Ox06, Ox09, Ox09, OX06, OX00, OX00, OX00

GPIO _graceInit()

BCSplus_graceInit()

USCI_A@_graceInit()

System_graceInit()

WDTplus_graceInit()

lcd_symbol();

print_C(X_pos, value);

print_I(X_pos, value);

print_D(X_pos, value,

points);

print_F(X_pos, value,
points);

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelInit();

BCSplus_graceInit();

USCI_AO_graceInit();

System_graceInit();

WDTplus_graceInit();

LCD_init();
LCD_clear_home();
lcd_symbol();

LCD_goto(0, 0);
LCD_putstr("P/kPa:");
LCD_goto(0, 1);
LCD_putstr("T/ C :");
LCD_goto(2, 1);
LCD_send(0, DAT);

MPL115A1_init();
(1)
MPL115A1_get_data(&p,
print_F(10, 0, p, 1);

print_F(11, 1, t, 1);
delay_ms(400);

GPIO_graceInit(

P1SEL2 = BIT1 | BIT2 | BIT4;

9;

BIT1 | BIT2 | BIT4;

9;

BITO | BIT1;

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_8MHZ != OxFF)

__delay_cycles(100000);

DCOCTL = 0x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S_ O | LFXT1S_@ | XCAP_1;

USCI_AO@_gracelInit(

UCAOCTL1 |= UCSWRST;

UCAGCTL® = UCCKPH | UCMSB | UCMST | UCMODE_1 | UCSYNC;

UCAOCTL1 UCSSEL_2 | UCSWRST;

UCA®BRO = 8;

UCAOCTL1 &= ~UCSWRST;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_symbol(
9;
LCD_send(0x40, CMD);

(s = 9; s < 8; s++)

{
}

LCD_send(0x80, CMD);

LCD_send(symbol[s], DAT);

print_C(X_pos, y_pos,
ch[5] = {ox20, 0x20, ©0x20, 0x20, '\0'};
(value < 0x00)

ch[o] ox2D;
value -value;

ch[o] 0x20;

((value > 99) && (value <= 999))
ch[1] ((value / 100) + 0x30);
ch[2] (((value % 100) / 10) + 06x30);
ch[3] ((value % 10) + 0x30);

((value > 9) && (value <= 99))
ch[1] (((value % 100) / 10) + ©x30);
ch[2] ((value % 10) + 0x30);
ch[3] 0x20;

((value >= 0) && (value <= 9))

ch[1] ((value % 10) + 0x30);
ch[2] 0x20;
ch[3] 0x20;

}

LCD_goto(x_pos, y pos);
LCD_putstr(ch);

print_I(X_pos, y_pos,
ch[7] = {0x20, 0x20, 0x20, Ox20, 0x28, 0x20, '\0'};
(value < 0)

ch[9] ox2D;
value -value;

ch[9] 0x20;

(value > 9999)

ch[1]
ch[2]

value / 10000) + 0x30);
(value % 10000)/ 1000) + 0x30);

ch[4]
ch[5]

(value % 100) / 10) + 0x30);
value % 10) + 0x30);

((
((
ch[3] (((value % 1000) / 100) + 0x30);
((
((

((value > 999) && (value <= 9999))

ch[1] (((value % 10000)/ 1000) + 0x30);
ch[2] (((value % 1000) / 100) + 0x30);
ch[3] (((value % 100) / 10) + 0x30);
ch[4] ((value % 10) + 0x30);

ch[5] 0x20;

((value > 99) && (value <= 999))

ch[1] (((value % 1000) / 100) + 0x30);
ch[2] (((value % 100) / 10) + 0x30);
ch[3] ((value % 10) + 0x30);

ch[4] = ox20;

ch[5] 0x20;

((value > 9) && (value <= 99))

ch[1] (((value % 100) / 10) + 0x30);
ch[2] ((value % 10) + 06x30);

ch[3] 0x20;

ch[4] = 0x20;

ch[5] 0x20;

ch[1] ((value % 10) + 0x30);
ch[2] 0x20;
ch[3] 0x20;
ch[4] = ox20;
ch[5] 0x20;
}

LCD_goto(x_pos, y pos);
LCD_putstr(ch);

print_D(X_pos,
points)

ch[5] = {Ox2E, 0x20, 0x20, '\0'};
ch[1] = ((value / 100) + 0x30);

(points > 1)

ch[2] = (((value / 10) % 10) + 0x30);

(points > 1)
{

}

ch[3] = ((value % 10) + 0x30);

}

LCD_goto(x_pos, y pos);
LCD_putstr(ch);

print_F(X_pos,
points)

{
tmp = Ox0000;

tmp = value;
print_I(x_pos, y_pos, tmp);
tmp = ((value - tmp) * 1000);

(tmp < 9)
{

}

(value < 0)
{

tmp = -tmp;

value = -value;
LCD_goto(x_pos, y_pos);
LCD_putchar(0x2D);

LCD_goto(x_pos, y_pos);
LCD_putchar(0x20);

((value >= 10000) && (value < 100000))
print_D((x_pos + 6), y_pos, tmp, points);
((value >= 1000) && (value < 10000))
print_D((x_pos + 5), y_pos, tmp, points);
((value >= 100) && (value < 1000))
print_D((x_pos + 4), y pos, tmp, points);
((value >= 10) && (value < 100))
print_D((x_pos + 3), y_pos, tmp, points);

(value < 10)

print_D((x_pos + 2), y pos, tmp, points);

Simulation

The model for MPL115A1 is not available in Proteus VSM and so it cannot be simulated. Only the
pinouts are shown in the schematic below.

LCD1
LMD15L
U1 _
22 FET/NMISBWTDIC P OTADCLKIACLKIADICAD [t wow v - D e
& TESTISEWTCK P1.1/TAQDUCADRXD/UCADSOMUATICAT |———() MISO R LBY PEw BoBB3838
28 avce P1.2TAQ1UCADTXD/UCADSIMOIAZICAZ [—&——Q) MOSI R2
20 myss F1.IADC10CLKICAOUTVREF-VEREF-(A3iCAT == 10k | | 10k -Hml efolo| ~ofe _:-_l_-; ofeo]
P1.4/SMCLK/UCBOSTE/ICAOCLIVREF +EREF +/ASICASTCH 1"—0 SCK U3
P1.5TA0.0IUCBOCLK/UCADSTEISICASTMS. [—2- " .
P1.8/TAD. /1ICBOSOMIUCBOSCLIABICABTDITCLIC [—2l]
P1.7/CAOUT/UCEOSIMCAUCBOSDAIAT/CAT TDOM DI soA P12
. F2
—L p3gTAnE F2.0MALD f—2——(SON L wE P3 [———0 Back Light
= pa1TAtD P2.1TA11 ——0 cen R3 . Pé [
ﬁ P3.2TA1 1 P2.3TAI i c! A0 5 [k
2 Paamarz Paamatp (2) A1 il
P3.4TALD P2 4/TALZ a2 FT
ﬁ P3.5TAD1 P2.5TALZ ﬁ 10K e
P3ATAQ2 XINP2.ETAG1 = e
20 pa7mAicLkicAOUT XOUTE2 7 =22
& ® DSWA
MSP420G2553
ﬂ H H DIPSW_3

238

Explanation

HW_SPIl.h and HW_SPI.c files describe the functionality of USCI-SPI hardware.

HW_SPI_init();
SPI_write(tx_data);

SPI_read()
SPI_transfer(tx_data);

The first function as shown above initiates the USCI-SPI hardware. The initialization is generated using
Grace. Note the Grace screenshot below:

LCxCLK
USCl A0 ——__—— P1.4/UCBOSTE/UCAOCLE ~
Clock source 5Pl Mode UCxSOMI

—— s P1.1/UCADRXD/UCADSOMI
Master mo CxSIMO

£

SMCLE e

BRCLK ——_ »——P1.2/UCAOTXD/UCADSIMO ~
LUCxSTE
4-Pin SPlw ~ |—<_ »—— UCADSTE Qutput OFF w
Cycled# 1 2 X 8-pit
BYAYA WA
M5B fil ~ "
—- -
Bitrate = | 1000 kbps ~ ter=1us
Set Custom bps
Clock Phase: | Data is capture Clock Polarty: | Inactive state i

These settings describe which pins are being used, their purposes, communication speed, SPI mode,
clock polarity and so on. Note the slave select pin is not shown here as we have used a different pin
for that purpose.

SPI_read, SPI_write and SPI_transfer functions do their job as per their naming.

Now let’s get inside the read and write function of USCI-SPI

SPI_write(tx_data)

(1 (IFG2 & UCA®TXIFG));
UCAGTXBUF = tx data;

239

(UCAGSTAT & UCBUSY);

SPI_read()
rx_data = 0;
(! (IFG2 & UCAGRXIFG));
rx_data = UCA@RXBUF;
(UCABSTAT & UCBUSY);

rx_data;

SPI_transfer(tx_data)
rx_data = 0;
(!(IFG2 & UCA@TXIFG));

UCAOTXBUF = tx_data;
(UCA@STAT & UCBUSY);

('(IFG2 & UCAORXIFG));
rx_data = UCAORXBUF;
(UCAQSTAT & UCBUSY);

rx_data;

The SPI read and write processes are simplest to understand. Before starting communication,
respective data transaction interrupt flags are polled. Note that these flags are needed even if we
don’t use USCI interrupts. Once polled okay, data is sent from MSP430 device in SPI write mode or
received while in read mode. Then we have to check if data has been fully received/transmitted by
asserting the USCI busy flag. Lastly the USCI SPI transfer function is a mixture of both SPI read and
write functions.

The code here is used to read a MPL115A1 barometric pressure sensor and display atmospheric

pressure-temperature data. MPL115A1 uses full-duplex SPI communication medium to communicate
with its host device and here MSP430’s USCI_AO in SPI mode is employed to achieved that.

240

Demo

. .-O-w.n CERTETTRYCRN N,
e
.

Demo video: https://youtu.be/1uFOF87f0OHwW.

241

https://youtu.be/1uFOF87f0Hw

USCI SPI — Interfacing SSD1306 OLED Display

SPI is perhaps best known for the communication speed it offers. This raw communication speed is
most needed when we need to interface external memories and smart displays like TFT displays and
OLED displays. Here, we will see how to interface a SSD1306 OLED display with MSP430 using half-
duplex or unidirectional USCl-based SPI communication bus.

s B LE WL

Code Example

HW_SPLh

<msp430.h>

HW_SPI_init();
SPI_write(tx_data);
SPI_read()
SPI_transfer(tx_data);

HW_SPI.c

"HW_SPI.h"

HW_SPI_init()

UCBOCTL1 |= UCSWRST;

UCBOCTL® = UCCKPH | UCMSB | UCMST | UCMODE_1 | UCSYNC;
UCBOCTL1 = UCSSEL_2;

UCB@BRO = 8;

UCB@BR1 = 0;

UCBOCTL1 &= ~UCSWRST;

SPI_write(tx_data)

242

(! (IFG2 & UCBOTXIFG));
UCBOTXBUF = tx_data;
(UCBOSTAT & UCBUSY);

SPI_read()
rx_data = 9;
(! (IFG2 & UCBORXIFG));
rx_data = UCBORXBUF;
(UCBOSTAT & UCBUSY);

rx_data;

SPI_transfer(tx_data)
rx_data = 0;

('(IFG2 & UCBOTXIFG));
UCBOTXBUF = tx_data;
(UCBOSTAT & UCBUSY);

('(IFG2 & UCBORXIFG));
rx_data = UCBORXBUF;
(UCBOSTAT & UCBUSY);

rx_data;

S$5D1306.h

<MSP430.h>
"delay.h"
"HW_SPI.h"

OLED_PORT P10UT
OLED_DIR P1DIR

RST_pin BIT2
DC_pin BIT3
CS_pin BIT4

OLED_PORT_OUT() OLED _DIR |= (RST_pin | DC_pin |

OLED_RST_HIGH() OLED_PORT |= RST pin
OLED_RST_LOW() OLED_PORT &= ~RST_pin
OLED_DC_HIGH() OLED_PORT |= DC_pin
OLED_DC_LOW() OLED_PORT &= ~DC_pin
OLED_CS_HIGH() OLED_PORT |= CS_pin
OLED_CS_LOW() OLED_PORT &= ~CS_pin

Set_Lower_Column_Start_Address_CMD 0x00

Set_Higher_Column_Start_Address_CMD
Set_Memory_Addressing_Mode_CMD
Set_Column_Address_CMD
Set_Page_Address_CMD
Set_Display_Start_Line_CMD
Set_Contrast_Control_CMD
Set_Charge_Pump_CMD
Set_Segment_Remap_CMD
Set_Entire_Display_ON_CMD
Set_Normal_or_Inverse_Display_CMD
Set_Multiplex_Ratio_CMD
Set_Display ON_or_OFF_CMD
Set_Page_Start_Address_CMD
Set_COM_Output_Scan_Direction_CMD
Set_Display_Offset_CMD
Set_Display_Clock_CMD
Set_Pre_charge_Period_CMD
Set_Common_HW_Config_CMD
Set_VCOMH_Level_CMD

Set_NOP_CMD
Horizontal_Addressing_Mode
Vertical_Addressing_Mode
Page_Addressing_Mode
Disable_Charge_Pump
Enable_Charge_Pump
Column_Address_0 Mapped_to_SEGO
Column_Address_© Mapped_to_SEG127
Normal_Display

Entire_Display_ON
Non_Inverted_Display
Inverted_Display

Display_OFF

Display_ON

Scan_from_COM@_to_63
Scan_from_COM63_to_©

X_size
X_max
X_min
y_size
y_max
y_min

ON

setup_GPIOs();
OLED_init();
OLED_reset_sequence()

OLED_write(value,
OLED_gotoxy (X_pos,
OLED_fill(bmp_data);
OLED_clear_screen()
OLED_cursor(X_pos,
OLED_print_char(X_pos,
OLED_print_string(X_pos,
*ch);
OLED_print_chr(X_pos,
OLED_print_int(X_pos,
OLED_print_decimal(X_pos,
value, points);
OLED_print_float(X_pos,
points);

55D1306.c

"SSD1306.h"
"fonts.h"
setup_GPIOs(
OLED_PORT_OUT();

P1SEL2 = BITS | BIT7;
P1SEL = BIT5 | BIT7;

OLED_init(

setup_GPIOs();
HW_SPI_init();

OLED_reset_sequence();
OLED_write((Set_Display ON_or_ OFF_CMD + Display OFF),

OLED_write(Set_Display Clock_CMD, CMD);
OLED_write(0x80, CMD);

OLED_write(Set_Multiplex Ratio_CMD, CMD);
OLED_write(0x3F, CMD);

OLED_write(Set Display Offset_CMD, CMD);
OLED_write(0x00, CMD);

OLED_write((Set_Display Start_Line CMD | 0x00), CMD);

OLED_write(Set_Charge_Pump_CMD, CMD);
OLED write((Set_Higher_ Column_Start_Address CMD | Enable Charge Pump), CMD);

OLED_write(Set_Memory_Addressing Mode_CMD, CMD);
OLED_write(Page_Addressing Mode, CMD);

OLED write((Set_Segment Remap CMD | Column_Address @ Mapped to SEG127), CMD);

OLED_write((Set COM Output Scan Direction CMD | Scan_from COM63 to @), CMD);

OLED_write(Set_Common_HW_Config CMD, CMD);
OLED_write(0x12, CMD);

OLED_write(Set_Contrast_Control CMD, CMD);
OLED_write(0xCF, CMD);

OLED_write(Set_Pre_charge_Period_CMD, CMD);
OLED_write(©xF1, CMD);

OLED_write(Set VCOMH Level CMD, CMD);
OLED_write(0x40, CMD);

OLED_write((Set_Entire Display ON_CMD | Normal Display), CMD);

OLED write((Set_Normal or_Inverse Display CMD | Non_Inverted Display), CMD);
OLED_write((Set_Display_ON_or_OFF_CMD + Display_ON) , CMD);

OLED_gotoxy (0, 9);

OLED_clear_screen();

OLED_reset_sequence(

delay ms(490);
OLED_RST_LOW();
delay _ms(40);
OLED_RST _HIGH();

OLED_write(
(type)
DAT:

OLED_DC_HIGH();

)

CMD:

OLED_DC_LOW();

)

}

OLED_CS_LOW();
SPI_transfer(value);
OLED_CS_HIGH();

OLED_gotoxy (X_pos, y_pos)

OLED write((Set_Page Start Address CMD + y pos), CMD);

OLED_write(((x_pos & 0Ox0F) | Set_Lower Column_Start Address CMD), CMD);
OLED_write((((x_pos & 0xFQ) >> 0x04) | Set Higher_Column_Start_Address_CMD),
CMD) ;
}
OLED_fill(bmp_data)

X_pos = 0;
page = 0;

(page = y_min; page < y_max; page++)

OLED_write((Set_Page Start_Address_CMD + page), CMD);
OLED_write(Set_Lower_Column_Start_Address CMD, CMD);
OLED_write(Set_Higher_Column_Start_Address_CMD, CMD);

(x_pos = x_min; X_pos < X_max; X_poS++)

OLED_write(bmp data, DAT);

OLED_clear_screen(

OLED_fill(0x00);

OLED_cursor(

(y_pos != 0)
{
(x_pos == 1)

OLED_gotoxy(0x00, (y_pos + 0x02));

OLED_gotoxy((0x50 + ((x_pos - 0x02) * 0x06)), (y_pos + 0x02));

(i=09; 1<6; i++)

OLED_write(@xFF, DAT);

chr = (ch - 32);

(x_pos > (x_max - 6))
{
X_pos = 0;
Yy _pOS++;

}
OLED_gotoxy(x_pos, y pos);
= 0; s < 6; S++)

OLED_write(font_regular[chr][s], DAT);

OLED_print_string(
*ch)
{
ch 0;
i H
J ;

(ch[j] !'= "\@")
chr = (ch[j] - 32);

(x_pos > (x_max - ©x06))
{
X_pos = 0x00;
Y_poOS++;

}
OLED_gotoxy(x_pos, y pos);

(i =0; 1< 6; i++)

{
}

OLED_write(font_regular[chr][i], DAT);

J++;
X_pos += 6;

(value < 0)

OLED_print_char(x_pos, y_pos, '-');
value = -value;

OLED_print_char(x_pos, y_pos," ');

((value > 99) && (value <= 999))

ch = (value / 100);

OLED_print_char((x_pos + 6), y_pos , (6x30 + ch));
ch = ((value % 100) / 10);

OLED_print_char((x_pos + 12), y pos , (6x30 + ch));
ch = (value % 10);

OLED_print_char((x_pos + 18), y pos , (6x30 + ch));

((value > 9) && (value <= 99))
ch = ((value % 100) / 10);
OLED_print_char((x_pos + 6), y_pos , (6x30 + ch));
ch = (value % 10);
OLED_print_char((x_pos + 12), y pos , (6x30 + ch));
OLED_print_char((x_pos + 18), y pos , 0x20);
((value >= 0) && (value <= 9))
ch = (value % 10);
OLED_print_char((x_pos + 6), y pos , (06x30 + ch));

OLED_print_char((x_pos + 12), y pos , 0x20);
OLED_print_char((x_pos + 18), y pos , 0x20);

OLED_print_int(

(value < 0)

OLED_print_char(x_pos,
value = -value;

OLED_print_char(x_pos,

(value > 9999)

ch = (value / 10000);
OLED_print_char((x_pos + 6), y_pos , (0x30 + ch));

ch = ((value % 10000)/ 1000);
OLED_print_char((x_pos + 12), y _pos , (0x30 + ch));

ch = ((value % 1000) / 100);
OLED_print_char((x_pos + 18), » (0x30 + ch));

ch = ((value % 100) / 10);
OLED_print_char((x_pos + 24), » (0x30 + ch));

ch = (value % 10);
OLED_print_char((x_pos + 30), , (6x30 + ch));

((value > 999) && (value <= 9999))

ch = ((value % 10000)/ 1000);
OLED_print_char((x_pos + 6), y_pos , (6x30 + ch));

ch = ((value % 1000) / 100);
OLED_print_char((x_pos + 12), y_pos , (8x30 + ch));

ch = ((value % 100) / 10);
OLED_print_char((x_pos + 18), y_pos (0x30 + ch));

ch = (value % 10);
OLED_print_char((x_pos + 24), y_pos (0x30 + ch));
OLED_print_char((x_pos + 30), y _pos , 0x20);

((value > 99) && (value <= 999))

ch = ((value % 1000) / 100);
OLED_print_char((x_pos + 6), y pos , (0x30 + ch));

ch = ((value % 100) / 10);
OLED_print_char((x_pos + 12), y_pos (0x30 + ch));

ch = (value % 10);

OLED_print_char((x_pos + 18), y pos (0x30 + ch));
OLED_print_char((x_pos + 24), y pos , 0x20);
OLED_print_char((x_pos + 30), y _pos , 0x20);

((value > 9) && (value <= 99))

ch = ((value % 100) / 10);
OLED_print_char((x_pos + 6), y _pos , (6x30 + ch));

ch = (value % 10);
OLED_print_char((x_pos + 12), y_pos (0x30 + ch));

OLED_print_char((x_pos + 18), y _pos , 0x20);
OLED_print_char((x_pos + 24), y _pos , 0x20);
OLED_print_char((x_pos + 30), y_pos , 0x20);

ch = (value % 10);

OLED_print_char((x_pos (0x30 + ch));
OLED_print_char((x_pos , 0x20);
OLED_print_char((x_pos , 0x20);
OLED_print_char((x_pos , 0x20);
OLED_print_char((x_pos , 0x20);

OLED_print_decimal(
value, points)

{

OLED_print_char(x _pos, y pos, '.');

ch = (value / 1000);
OLED_print_char((x_pos + 6), y pos , (6x30 + ch));

(points > 1)

{
ch = ((value % 1000) / 100);

OLED_print_char((x_pos + 12), y pos , (6x30 + ch));

(points > 2)

{
ch = ((value % 100) / 10);
OLED_print_char((x_pos + 18), y _pos , (0x30 + ch));

(points > 3)

{
ch = (value % 10);

OLED_print_char((x_pos + 24), y pos , (6x30 + ch));

OLED_print_float(
points)

tmp = 0;
tmp = value;

OLED_print_int(x_pos, y _pos, tmp);
tmp = ((value - tmp) * 10000);

(tmp < 9)
{

}

((value >= 10000) && (value < 100000))

tmp = -tmp;

OLED_print_decimal((x_pos + 36), y_pos, points);
((value >= 1000) && (value < 10000))

OLED_print_decimal((x_pos + 30), y_pos, points);
((value >= 100) && (value < 1000))

OLED_print_decimal((x_pos + 24), y_pos, points);
((value >= 10) && (value < 100))

OLED_print_decimal((x_pos + 18), y_pos, points);
(value < 10)

OLED_print_decimal((x_pos + 12), y_pos, points);
(value < 9)

OLED_print_char(x_pos, y_pos,

OLED_print_char(x_pos, y_pos,

<msp430.h>
"delay.h"
"HW_SPI.h"
"SSD1306.h"

GPIO_graceInit()3
BCSplus_graceInit()3
USCI_BO_graceInit()3
System_graceInit()
WDTplus_gracelInit()

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelInit();

BCSplus_graceInit();

USCI_BO_graceInit();

System_graceInit();

WDTplus_graceInit();
OLED_init();

OLED_print_string(4, 0, "MSP438G2553 SSD1306");
OLED_print_string(16, 1, "USCI_B@ SPI Test");
OLED_print_string(0, 4, "Char :");
OLED_print_string(9, 5, "Int. :");
OLED_print_string(9, 6, "Float:");

(1)

OLED_print_chr(92, 4, c);
OLED_print_int(92, 5, i);
OLED_print_float(92, 6, f,
C++;

i++;

f += 0.1;

delay ms(200);

GPIO_graceInit(

P1SEL2 = BITS | BIT7;

9;

BIT5 | BIT7;

BIT2 | BIT3 | BIT4;

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_@ | DIVS_@;

(CALBC1_8MHZ != OxFF)

__delay_cycles(100000);

DCOCTL = ©x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_G;

BCSCTL3 = XT2S_@ | LFXT1S_@ | XCAP_1;

USCI_BO_graceInit(

UCBOCTL1 |= UCSWRST;

UCBOCTL® = UCCKPH | UCMSB | UCMST | UCMODE_1 | UCSYNC;

UCBOCTL1 UCSSEL_2 | UCSWRST;

UCB@BRO = 8;

UCBOCTL1 &= ~UCSWRST;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

256

Simulation

The model for SPI-based SSD1306 OLED display is not available in Proteus VSM and so it cannot be
simulated. Only the pinouts are shown in the schematic below.

U1
% RST/NMISBWTDIO P1.0/TAOCLK/ACLK/AQICAD %
o] TEST/SBWTCK P1.1/TA0.O/UCAORXD/UCAOSOMI/AT/CA1 5
51 AVCC P1.2/TAQ. 1/UCAOTXD/UCAOSIMO/AZ/ICA2 3—0 RST
— AVSS P1.3/ADC10CLK/CACUT/VREF-/VEREF-/A3/CA3 4—0 DC
P1.4/SMCLK/UCBOSTE/UCAOCLKNVREF+VEREF+HA4/CA4/TCK 5—0 Cs
P1.5/TA0.0/UCBOCLK/UCAOSTE/AB/CASITMS TO SCK
P1.6/TAD.1/UCBOSOMI/UCBOSCL/AG/CAG/TDITCLK TO MOSI
P1.7/CAOUT/UCBOSIMO/UCBOSDA/ATICATTDO/TDI ===
g— P3.0/TAD.2 P2.0/TA1.0 %
eV P3.1/TA1.0 P2 1/TA1.1 —
EFm P3.2/TA1A P2.2/TA11 EG
Evam P3.3/TA12 P2.3/TA1.0 T
T P3.4/TAD.0 P2 4/TA1.2 E
To 1 P3.5/TA01 P2.5/TA1.2 -
0] P3.6/TA0.2 XIN/P2.6/TAD 1 5
=1 P3.7/TA1CLK/ICAQUT XOUT/P2.7 p—=
SP430G2553

Explanation

The code here basically uses the same functions as in the previous example except for the fact that
USCI_BO is used in half-duplex mode here. The rest of the code is the driver implementation for
SSD1306 OLED display. Note that the driver has been cut short of graphical functions due to low
memory capacity of Value-Line Devices. Explaining the operation of the OLED display is beyond the
scope of this article.

UCxCLK
< >—— P1.5/UCBOCLE/UCADSTE w

Clock source SLI'-I"IS(I':A:I_B: JCxSOMI
ode |« CBOSOMIOutput OFF
SMCLK ~
Master ma ~ UCxSIMO

BRCLK < >—— P1.7/UCBOSIMO/UCBOSDA ~
UCxSTE
4-PinsPlw ~ | [—<_ »—— UCBOSTE Qutput OFF w~
Cycle# 1 2 X B-bit
MSE fil ~ Ten
—- -
Bitrate = 1000 kbps ~ ter=1us
Set Custom bps
Clock Phase: Data is capture ~ Clock Polarity: | Inactive state i ~

257

Demo

o
S oosaTs o
PLY D el

] e?

=l g7 e L

rra
P2
Lot}
-

et TolLe
iy Tl LA TR

“Ehu T i

Demo video: https://youtu.be/nxIARm-RGoY.

258

https://youtu.be/nxlARm-RGoY

Software SPI — Interfacing MCP4921

Software SPI is the only solution in absence of USI/USCI modules. We need to code every step after
studying device datasheet since there are four modes of SPI communication and we need to be sure
which modes are supported by the device we are trying to communicate with. It should be noted that
software SPI is not as fast as hardware-based SPI and this become more evident when software SPl is
used to drive displays like TFTs, OLEDs, dot-matrix displays and monochrome displays like the one
shown below. Software SPI may encounter issues due to glitches if improperly coded.

However, for a beginner, software-based SPI is good for understanding the concept behind SPI
communication. Shown below is a typical SPI bus timing diagram. As you see it is simply a pattern of
ones and zeroes. Digital I/O can generate these patterns if coded.

259

Code Example

MCP4921.h

<msp430.h>
"delay.h"

SW_SPI_DIR P2DIR
SW_SPI_OUT P20UT
SW_SPI_IN P2IN

SCK_pin BITO
CS_pin BIT1
SDI_pin BIT2
LDAC_pin BIT3

SCK_DIR_OUT() {SW_SPI_DIR |= SCK_pin;} (0)
SCK_DIR_IN() {SW_SPI_DIR &= ~SCK_pin;})
CS_DIR_OUT() {SW_SPI_DIR |= CS_pin;} (0)
CS_DIR_IN() {SW_SPI_DIR &= ~CS_pin;})
SDI_DIR_OUT() {SW_SPI_DIR |= SDI_pin;} (0)
SDI_DIR_IN() {SW_SPI_DIR &= ~SDI_pin;})
LDAC_DIR_OUT() {SW_SPI_DIR |= LDAC_pin;} (0)
LDAC_DIR_IN() {SW_SPI_DIR &= ~LDAC_pin;})

SCK_HIGH() {SW_SPI_OUT |= SCK_pin;} (0)
SCK_LOW() {SW_SPI_OUT &= ~SCK_pin;})
CS_HIGH() {SW_SPI_OUT |= CS_pin;} (0)
CS_LOW() {SW_SPI_OUT &= ~CS_pin;})
SDI_HIGH() {SW_SPI_OUT |= SDI_pin;} (0)
SDI_LOW() {SW_SPI_OUT &= ~SDI_pin;})
LDAC_HIGH() {SW_SPI_OUT |= LDAC_pin;} (0)
LDAC_LOW() {SW_SPI_OUT &= ~LDAC_pin;})

ignore_cmd 0x80
DAC_write_cmd 0x00
Buffer_on 0x40
Buffer_off 0x00
Gain_1X 0x20
Gain_2X 0x00
Run_cmd 0x10
Shutdown 0x00

MCP4921_init(
MCP4921_ write(dac_value);

MCP4921.c

"MCP4921.h"

MCP4921_init(

CS_DIR_OUT();
SCK_DIR_OUT();

SDI_DIR OUT();
LDAC_DIR_OUT();

CS_HIGH();
LDAC_HIGH();

SCK_HIGH();
SDI_HIGH();

MCP4921 write(dac_value)
s = 16;

value = 0;

value = cmd;
value <<= 8;
value |= (dac_value & Ox@FFF);

CS_LOW();
(s > 9)
((value & 9x8000) != @)

SDI_HIGH();

SDI_LOW();

SCK_LOW();
SCK_HIGH();
value <<= 1;
S--5

}

LDAC_LOW();
CS_HIGH();
delay us(10);
LDAC_HIGH();

<msp430.h>
"delay.h"
"MCP4921.h"

GPIO_gracelInit()

BCSplus_graceInit()
System_graceInit()
WDTplus_graceInit()

sine_table[33] =

triangle_table[33] =

square_table[33] =

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelInit();

BCSplus_graceInit();

System_graceInit();

WDTplus_graceInit();
MCP4921_init();
(1)
((P1IN & BIT3) == 0)
¢ P10UT |= BITO;

((P1IN & BIT3) == 0);
wave++;

(wave > 2)

{
}

P1OUT &= ~BITO;

wave = 0;

(s = 0; s < 32; s++)
{
MCP4921 write((DAC_write cmd | Buffer_on | Gain_1X |
+ square_table[s]));
delay_ms(10);
}

{

(s = 31; s > 0; s--)

MCP4921_write((DAC_write_cmd | Buffer_on | Gain_1X |
Run_cmd), + square_table[s]));
delay ms(190);
}

{

(s = 0; s < 32; s++)

MCP4921_write((DAC_write_cmd | Buffer_on | Gain_1X |
Run_cmd), square_table[s]));
delay ms(190);

}
(s = 31; s > 0; s--)

{
MCP4921 write((DAC_write cmd | Buffer on
Run_cmd), (2047 - square_table[s]));
delay ms(190);
}

(s = 0; s < 32; s++)
{
MCP4921 write((DAC_write cmd | Buffer_on | Gain_1X
Run_cmd), triangle_table[s]));
delay ms(190);
}

{

(s = 31; s > 0; s--)

MCP4921_write((DAC_write_cmd | Buffer_on | Gain_1X
Run_cmd), triangle_table[s]));
delay_ms(10);

}

{
MCP4921_write((DAC_write_cmd | Buffer_on
Run_cmd), triangle_table[s]));
delay_ms(10);

(s = 9; s < 32; s++)

}
{

(s = 31; s > 0; s--)

MCP4921_write((DAC_write_cmd | Buffer_on | Gain_1X

Run_cmd), triangle_table[s]));
delay ms(19);

}

(s = 05 s < 32; s++)

{
MCP4921_write((DAC_write_cmd | Buffer_on | Gain_1X
sine_table[s]));
delay ms(19);

}

{
MCP4921_write((DAC_write_cmd | Buffer_on | Gain_1X
Run_cmd), sine_table[s]));
delay ms(19);

(s =31; s > 0; s--)

}
{

(s = 0; s < 32; s++)

MCP4921 write((DAC_write_cmd | Buffer_on | Gain_1X
Run_cmd), sine_table[s]));
delay_ms(10);

}

{
MCP4921_write((DAC_write_cmd | Buffer_on
sine_table[s]));

(s = 31; s > 0; s--)

delay ms(10);

GPIO_graceInit(

9;

&= ~(BIT6 | BIT7);

BITO | BIT1 | BIT2

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS 0;

(CALBC1_1MHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S_@ | LFXT1S_© | XCAP_1;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

268

Simulation

LED_GREEN

Ui uz
LED GREEN (CF | PTG I ADTAD = “heck VOUTH oo
—3a P11TALDMGAACAT P21 = il 3 VREFA
— P1aTAn Az P23 |2
ELITTON O | P1.3ADCICLICADUTIAAVREF-WEREF-CAP2 3 (v [
2 o PATALZSMCLKIPMNREF $NEREF-CAMITCR2 4 (o8 -
2R 4w P1STAQDECLIARICASTME P25 o MoheER
HED_RED Oﬁ P1ATAL FSSOOEC LSS AR TONTCRHN PR ETR0 1 Fig
] ELI/SDVEDAATICATTOOTH NOUTPZT =11
RST (C————— RETHMYEEWTING TESTIEEM TN [—— a
Dz [EE |
LED-RED: 8
cl—
of—

Digital Oscilloscope x

Channel C
Position Position

Channel B Channel D
Source Position Position

B COD i 35

1 i i

— E ! GND E ! GND
Poaition f‘ 40 el =l + 121 e =

Explanation

Software SPI requires digital 1/0Os only. Software SPI is achieved using bit-banging technique. For this
demo, a MCP4921 12-bit DAC is used. This DAC communicates with a host micro using SPI bus. Check
the function below. Here from the data bit to the clock signal, everything is controlled by changing the
logic states of digital I/Os. The changes are done in such a way that they do exactly the same thing a
hardware SPI would have done. If we used hardware-based SPI as in the last example, it would have
taken one or two lines of code unlike the long listing given below. This extra coding along with some
hardware limitations reduces SPI clock speed.

MCP4921_write(dac_value)

value = cmd;
value <<= 8;
value |= (dac_value & OxOFFF);

CS_LOW();

269

(s > 9)
((value & 0x8000) != @)

SDI_HIGH();

{
}

SCK_LOW();
SCK_HIGH();
value <<= 1;
S--3

SDI_LOW();

}

LDAC_LOW();
CS_HIGH();
delay_us(10);
LDAC_HIGH();

The rest of the code simply does the work of a Digital Signal Synthesizer (DSS) a.k.a waveform
generator. It generates three types of waves using wave tables and some basic mathematics.

o e N e Ry I
n Aree P By - My ey e 7% % e Ty
i g g o b b SRR bk £ e
ke, gy | Bod Ayl i chaad ey
A e Sk el - i s o s B
i ol - R i i m e B B | P
;‘:i:.:',ti;j:i:}:&-.A.n.-w.-:u,..'.---.--: 4 :“hi{..*:;‘-:‘
w:_'l"..'-rl:-l;---ar-.---.-. - - .'.‘ﬂ,l.,h..l,,
o i r - [. ~ e, s -1
Tt e s oo e
.ra-.r,u-\._.d-._ - -1 =B P By
e e T g g,
BN A e - e g oy g, W
i e
T 4
s e
o . vy,
T)-‘..?.-Tl\._:

=

Demo video: https://www.youtube.com/watch?v=gPZJyL9LWQc.

270

https://www.youtube.com/watch?v=gPZJyL9LWQc

LCD using DIO Bit-Banging

Some MSP430 devices, especially the 14-pin parts have limited number of pins and so it is wise to use
port expanders like MCP23S17 or MAX7300, serial LCDs and shift register-based LCDs. Everything is
same here just as in the LCD example. The only exception is the method of handling the device
responsible for port-expansion task. In some cases, it may be necessary to use additional hardware
like UART/12C/SPI or emulate these methods using software when such dedicated hardware is either
unavailable or used up for some other jobs. Thus, in such cases, things are no longer as simple as with
digital 1/Os. In the software end, we will also need to code for the additional interface too.

" 12C / SPI
#.CD backpack

Everything that has an advantage must also have a disadvantage. The primary disadvantages that we
are left with when using port-expanded LCDs are slower displays and vulnerability to EMI. Noise and
glitches are big issues when your device is working in a harsh industrial environment surrounded by
electromagnetics. Likewise, if the wires connecting the LCD pack with the host MCU are too long, it is
highly likely to fail or show garbage characters after some time. The simplest solution to these issues
are to use shorter connection wires, slower communication speed and frequent but periodic
reinitialization of the LCD pack. Again, all these lead to slow functioning. Thus, a careful system design
is an absolute must.

The most popular methods of driving alphanumeric LCDs with fewer wires include:

e SPl-based solutions using shift registers like 74HC595 and CD4094B
e |2C-based solutions using I12C port expander ICs like PCF8574 and MCP23517.

We can use either hardware-based SPI/I2C modules or emulate these in software using bit-banging
methods. The former adds some much-needed processing speed which is impossible with bit-banging.

In this segment, we will see how to use a CD4094B CMOS shift-register with software SPI to drive an
alphanumeric LCD.

271

Code Example

Icd.h

<msp430.h>
<delay.h>

LCD_PORT P20UT

SDO BITo
SCK BIT1
STB BIT2

SDO_HIGH LCD_PORT
SDO_LOW LCD_PORT

SCK_HIGH LCD_PORT
SCK_LOW LCD_PORT

STB_HIGH LCD_PORT
STB_LOW LCD_PORT

clear_display oxoe1
goto_home 0x02

cursor_direction_inc (ox04
cursor_direction_dec (ox04
display_shift (ox04
display_no_shift (ox04

display on (oxes8
display_off (oxe8
cursor_on (ox08
cursor_off (oxe8
blink_on (oxe8
blink_off (oxe8

_8 pin_interface (0x20
_4 pin_interface (0x20
_2_row_display (ox20
_1 row_display (ox20
_5x10_dots (ox20
_5x7_dots (ox20

dly 1

data_value;

SIPO()3

LCD_init()

LCD_command (value);
LCD_send_data(value);
LCD_4bit_send(lcd data);
LCD_putstr(*1cd_string);
LCD_putchar(char_data);

LCD_clear_home();
LCD_goto(X_pos,

"lcd.h"

SIPO(

bit 0;
clk = 8;
temp = 9;

temp = data_value;
STB_LOW;

(clk > 9)

bit = ((temp & 6x80) >> 0x07);
bit &= 0x01;

(bit)
0:

SDO_LOW;

)

SDO_HIGH;

)

}

SCK_HIGH;

temp <<= 1;
clk--;

SCK_LOW;
}

STB_HIGH;

LCD_init(
= OX0A;

data_value = 0x08;
SIPO();
(t > 0x00)

{
delay ms(dly);

t--;
};

data_value = 0x30;
SIPO();

data_value |= 0x08;
SIPO();

delay ms(dly);
data_value &= 0OxF7;
SIPO();

delay ms(dly);

data_value = 0x30;
SIPO();

data_value |= 0x08;
SIPO();

delay ms(dly);
data_value &= 0xF7;
SIPO();

delay ms(dly);

data_value = 0x30;
SIPO();

data_value |= 0x08;
SIPO();

delay ms(dly);
data_value &= 0xF7;
SIPO();

delay ms(dly);

data_value = 0x20;
SIPO();

data_value |= 0x08;
SIPO();
delay_ms(dly);
data_value &= 0OxF7;
SIPO();

delay ms(dly);

LCD_command(_4_pin_interface | _2 row_display | _5x7_dots);
LCD_command(display _on | cursor_off | blink_off);
LCD_command(clear_display);

LCD_command (cursor_direction_inc | display no_shift);

LCD_command (
data_value &= 0OxFB;

SIPO();
LCD_4bit_send(value);

LCD_send_data(

data_value |= 0x04;
SIPO();
LCD_4bit_send(value);

LCD_4bit_send(lcd _data)
temp = 0x00;

temp = (lcd data & 0xF0);
data_value &= 0OxOF;
data_value |= temp;
SIPO();

data_value |= 0x08;
SIPO();

delay ms(dly);
data_value &= 0xF7;
SIPO();

delay ms(dly);

temp = (lcd _data & ©Ox0F);
temp <<= 0x04;

data_value &= OxOF;
data_value |= temp;
SIPO();

data_value |= 0x08;

SIPO();

delay ms(dly);
data_value &= 0OxF7;
SIPO();

delay ms(dly);

LCD_putstr(*1lcd_string)
(*lcd_string != "\0")
LCD_send_data(*1lcd_string);

lcd_string++;

}s

LCD_putchar(char_data)

LCD_send_data(char_data);

LCD_clear_home()

LCD_command(clear_display);
LCD_command (goto_home);

LCD_goto(

(y_pos == 0)

LCD_command (0x80 |

LCD_command(0x80 | 0x40 | x_pos);

<msp430.h>
"delay.h"
"lcd.h"

BCSplus_graceInit();
GPIO_graceInit()
System_graceInit()

0x00;

txtl[] {"MICROARENA"};
txt2[] {"SShahryiar"};
txt3[] = {"MSP-EXP430G2"};
txta[] {"Launchpad!"};

BCSplus_graceInit();
GPIO_graceInit();
System_graceInit();
LCD_init();

LCD_clear_home();

LCD_goto(3, 0);
LCD_putstr(txtl);
LCD_goto(3, 1);
LCD_putstr(txt2);
delay ms(2600);

LCD_clear_home();
(s = 0; s < 12; s++)
LCD_goto((2 + s), 0);

LCD_putchar(txt3[s]);
delay ms(60);

0; s < 10; s++)
LCD_goto((3 + s), 1);

LCD_putchar(txt4[s]);
delay_ms(60);

s = 0,
LCD_clear_home();

LCD_goto(3, 0);
LCD_putstr(txtl);

(1)
show_value(s);

S++;
delay ms(200);

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_16MHZ != OxFF)

__delay_cycles(1000);

DCOCTL = ©x00;

BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S O | LFXT1S © | XCAP_1;

GPIO_graceInit(

9;

9;

&= ~(BIT6 | BIT7);

BITO | BIT1 | BIT2;

9;

9;

System_graceInit()

WDTCTL = WDTPW | WDTHOLD;

show_value(
ch = 0x00;
ch = ((value / 100) + 0x30);

LCD_goto(6, 1);
LCD_putchar(ch);

ch = (((value / 10) % 10) + 0x30);
LCD_goto(7, 1);
LCD_putchar(ch);

ch = ((value % 10) + 0x30);
LCD_goto(8, 1);
LCD_putchar(ch);

Simulation
LCD1
LMo16L
B8l o=z Cm oot
= >>> o rEw coooooo
i a a[a[a] =[=]a[=]=]e]=]=
5 E zs - - of | o =4 = =
e q U1 U2
= = 2 ug 2m m4
- — LED_GREEN J——=5] P1.OMADCLKIACLIGADICAD P20 (o = L Qo I
f. P1ATAQ.QIALICAT P2.1 _?0 ‘3_ cLK a1 _g =
oo P12TA0 1A2ICA2 P22 1 =] 518 @ o=
BUTTON O———2| P1.3/ADC10CLKICAOUTIASIVREF-VEREF-1CA3 P23 [2= OE as (L
o P1-4TA.2ISMCLIIA4 VREF HIVEREF+CAYTOK P2.4 [Q4 [o==
R2 ie| P1-5TAO.DISCLIIASICASTMS P25 2 =
220 ED_RED O——— 1o P1.6/TA 1/SDOISCLIAGICABTDITCLK XINF28TA0Y [a6 [0
22| PI7/SDUSDAATICATITDOTDI xouTP27 (52 a7
RsT O—2— RETNMUSEWTDIO TEST/SBWTCK = o
es
MEF430G2452 &= [=10

D2

LED-RED

Explanation

Basically here, the same LCD library as in the LCD example has been used. The only difference is the
Serial-In-Parallel-Out (SIPO) part. | used a CD4094B CMOS SIPO shift register between the LCD and
the host MSP430 micro to achieve the port-expansion task. Only three pins of the host micro are
needed to drive the LCD. In the LCD library, you can see SIPO function on the top. This part translates
serial inputs to parallel outputs. Note that at every level the stored value in the SIPO is either ORed or
inverse ANDed instead of entirely changing the SIPO’s current content. In simple terms, it is like read-
modification-write. This is to ensure that only the target bits are altered, not the entire content of the
SIPO. In this way to some extent, data corruption is prevented.

279

e -

uFIFFgTFRFFRIOT

W

ol 6]

Demo video: https://www.youtube.com/watch?v=NBfBqtjZ35s.

280

https://www.youtube.com/watch?v=NBfBqtjZ35s

USI 12C — Interfacing PCF8574 1/O Expander

I12C is another popular form of on board synchronous serial communication developed by NXP. It just
uses two wires for communication and so it is also referred as Two Wire Interface (TWI). Just like SPI,
12C is widely used in interfacing real-time clocks (RTC), digital sensors, memory chips and so on. It
rivals SPI but compared to SPI it is slower and have some limitations. Typical bus speed ranges from a
few kilohertz to 400kHz. Up to 127 devices can coexist in an I12C bus. In an 12C bus it is not possible, by
conventional means to interface devices with same device IDs or devices with different logic voltage
levels without logic level converters and so on. Still however, 12C is very popular because these issues
rarely arise and because of its simplicity. Unlike other communications, there’s no pin/wire swapping
as two wires connect straight to the bus — SDA to SDA and SCL to SCL.

MSP430

1 VDD Microcontroller

Pull-up Resistors

12C Communication Bus
SCK iy O I S e SCK

SDA O SDA

12C Device
1

12C Device
127

As with SPI, an 12C bus must contain one master and one or more slaves. The master is solely
responsible for generating clock signals and initiating communication. Communication starts when
master sends out a slave’s ID with read/write command and request. The slave reacts to this command
by processing the request from the master and sending out data or processing it. 12C bus is always
pulled-up using pull-up resistors. Without these pull-up resistors, 12C bus may not function properly.

To know more about 12C interface visit the following links:

e https://learn.mikroe.com/i2c-everything-need-know/

e https://learn.sparkfun.com/tutorials/i2c

e http://www.ti.com/lsds/ti/interface/i2c-overview.page

e http://www.robot-electronics.co.uk/i2c-tutorial

e https://www.i2c-bus.org/i2c-bus/

e http://i2c.info/

Other protocols like SMBus and 12S have similarities with 12C and so learning about 12C advances
learning these too.

281

https://learn.mikroe.com/i2c-everything-need-know/
https://learn.sparkfun.com/tutorials/i2c
http://www.ti.com/lsds/ti/interface/i2c-overview.page
http://www.robot-electronics.co.uk/i2c-tutorial
https://www.i2c-bus.org/i2c-bus/
http://i2c.info/

Code Example

12C.h

<msp430.h>

FALSE
TRUE

wr FALSE
rd TRUE

SET_SDA_AS_OUTPUT() (USICTLO |= USIOE)
SET_SDA_AS_INPUT() (USICTLO &= ~USIOE)

FORCING_SDA_HIGH()
{
USISRL = OXFF;
USICTL® |= USIGE;
USICTLO &= ~(USIGE + USIOE);

}

FORCING_SDA_LOW()

{
USISRL = 0x00;
USICTLO |= (USIGE + USIOE);
USICTLO &= ~USIGE;

}

i2c_usi_mst_gen_start();
i2c_usi_mst_gen_repeated_start(
i2c_usi_mst_gen_stop();
i2c_usi_mst_wait_usi_cnt_flag(
i2c_usi_mst_send_byte(
i2c_usi_mst_read_byte(
i2c_usi_mst_send_n_ack(ack);
i2c_usi_mst_send_address(

"I2C.h"

usi_cnt_flag = FALSE;

i2c_usi_mst_gen_start(

FORCING_SDA_HIGH();

_delay cycles(100);

FORCING_SDA LOW();

i2c_usi_mst_gen_repeated_start(

USICTLO |= USIOE;
USISRL = OxFF;
USICNT = 1;

i2c_usi_mst_wait_usi_cnt_flag();

_delay _cycles(100);

FORCING_SDA_LOW();

_delay cycles(100);

i2c_usi_mst_gen_stop(

USICTLO |= USIOE;
USISRL = 0x00;
USICNT = 1;

i2c_usi_mst_wait_usi_cnt_flag();

FORCING_SDA_HIGH();

i2c_usi_mst_wait_usi_cnt_flag(

(usi_cnt_flag == FALSE)

usi_cnt_flag = FALSE;

i2c_usi_mst_send_byte(

SET_SDA_AS_OUTPUT();

data_byte)

USISRL = data_byte;
USICNT = (USICNT & OxEQ) + 8;

i2c_usi_mst_wait_usi_cnt_flag();

SET_SDA_AS_INPUT();
USICNT = (USICNT & OxE@) + 1;

i2c_usi_mst_wait_usi_cnt_flag();

(USISRL & 0x01)
{

FALSE;

TRUE;

i2c_usi_mst_read_byte(

{
SET_SDA_AS_INPUT();

USICNT = (USICNT & OxEQ) + 8;

i2c_usi_mst_wait_usi_cnt_flag();

USISRL;

i2c_usi_mst_send_n_ack(

SET_SDA_AS_OUTPUT();
(ack)

{
USISRL 0x00;

}

{
USISRL = OxFF;

¥
USICNT = (USICNT & OxE@) + 1;

i2c_usi_mst_wait_usi_cnt_flag();

SET_SDA_AS_INPUT();

i2c_usi_mst_send_address(

{

addr <<= 1;
(r_w)
{

}

addr |= 0x01;

(i2c_usi_mst_send_byte(addr));

vector=USI_VECTOR
USI_ISR (

(USICTL1 & USISTTIFG)
{

USICTL1 &= ~USISTTIFG;
}

(USICTL1 & USIIFG)
{

usi_cnt_flag = TRUE;

USICTL1 &= ~USIIFG;
}

PCF8574.h

"I2C.h"

PCF8574_address

PCF8574_read();
PCF8574_write(data_byte);

PCF8574.c

"PCF8574.h"

PCF8574_read()
port_byte = 0x00;

i2c_usi_mst_gen_start();
i2c_usi_mst_send_address(PCF8574 address, rd);

port_byte = i2c_usi_mst_read_byte();
i2c_usi_mst_send_n_ack(9);
i2c_usi_mst_gen_stop();

port_byte;

PCF8574_write(data_byte)

i2c_usi_mst_gen_start();
i2c_usi_mst_send_address(PCF8574 address, wr);
i2c_usi_mst_send_byte(data_byte);
i2c_usi_mst_gen_stop();

<msp430.h>
"delay.h"
"I12C.h"
"PCF8574.h"

GPIO_graceInit(
BCSplus_graceInit()
USI_graceInit()
System_graceInit()
WDTplus_gracelInit()3

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

USI_gracelInit();

System_graceInit();

WDTplus_gracelInit();
(1)
(i=1; i< 128; i <k=1)

PCF8574_write(i);

delay_ms(200);
(1 =128; i > 1; i »>=1)

PCF8574_write(i);
delay ms(200);

GPIO_graceInit(

9;

BIT6 | BIT7;

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_1IMHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_G;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

USI_graceInit(

USICTLO |= USISWRST;

USICTLO = USIPE7 | USIPE6 | USIMST | USISWRST;

USICTL1 = USII2C | USIIE | USIIFG;

USICKCTL = USIDIV_4 | USISSEL_2 | USICKPL;

USICNT = USIIFGCC;

USICTLO &= ~USISWRST;

USICTL1 &= ~(USIIFG + USISTTIFG);

System_graceInit(

IFG1 &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

Simulation

z . U1 .
w LED_GREEN ("0 P1.OTAOCLIIACLKIADICAD P20 o=
o o] P1-1TAQ.OIATICAT 7=
gl _ “5u | F1.2iTAD. 1/AZICAZ Pz.2 L8
4 g BUTTON O F1.3/ADC10CLKICAOUTIASNVREF-VEREF-ICAZ P2.3 [——
= P1-47TAD 2ISMCLIGA4IVREF+/VEREF+ICAATCK P24 (===
o] F1-5TAD OISCLKASICASTMS P25 o=
SCL O] F1.6TAD. 1ISDOISCLIABICABTDUTCLE XINF2BTAD] (==
5DA OQF—— "o F1.7/SDUSDAATICAT/TDOMDI XOUTIP27 22
R2 RST O———{ RET/NMISEWTDIO TESTISEWTCK ——
220R MSP430G2452
n
R6 SCL O—' A
D1 D2 Re R5 oon o——= 1. DETOTE
10k
LED-GREEN LED-RED U2
—]c
L]
scL O Hilsel PR aranton
soa O SDA P1 55 —] D
— 3. — i I
= R7 = INT F3 ?
-] n 1. i IETA
o A 5 Al PS5 [——
2= =11
] o | 3m ol il I 12
A2 PT —=
10k
e oo PCFa574
LI L]
L
DSW1
DIFSW_3
®
L]
tlals

Explanation

To keep things simple, | demoed USI-based 12C using PCF8574 8-bit 12C GPI0O expander. Here the GPIOs
of PCF8574 are used to create a running LED light pattern similar to Kitt Scan from the popular series
Knight Rider. The code for USI-based 12C implementation is obtained from TI's wiki page,
http://processors.wiki.ti.com/index.php/I2C_Communication with USI Module. | did some minor
modifications on it. The code is self-explanatory with detailed documentation on the wiki page and so
| won’t be discussing it. The rest of the code is the implementation of PCF8574 driver and actual demo
code.

201

http://processors.wiki.ti.com/index.php/I2C_Communication_with_USI_Module

Clock source usl SCL

1°C Mode

—)—{PL Doy/sCL ~

SMCLE e Sl |
Master mo ~

SDA

BRCLK ——_>——— P1.7/SDI/SDA v|

Start 1 2 X R ACK

L

—»

Bitrate = | 62500 bps w tgr=16us

Interrupt Enables
Counter Interrupt enable | Remove Interrupt Handler Code

I View All Interrupt Handlers
|:| START Condition interrupt enable

Demo video: https://www.youtube.com/watch?v=9svi-Ocd2gk.

292

https://www.youtube.com/watch?v=9svi-0cd2gk

USCI 12C — Interfacing BH1750 Ambient Light Sensor

Using USCI in 12C mode is a bit difficult compared to using USCI in SPI mode. This is because of the
many iterations and function calls in I2C mode. Again, here | tried to keep things simple and kept things
in a fashion we would normally expect. USCl-based I2C can be realized with a state-of-machine too
but that way is not easy for beginners.

UCA1D UCGCEN

Cwen Address UC 104

.Tl

—1{-= Receive Shift Register

v

Receive Buffier UC 1RXBUF

UCxSDA

12C State Machine

Transmit Bufer UC 1TXBUF

¥

&—1 == Transmit Shift Register >

+ v
Slave Address UC 154

TT

]
UCSLA10

UCxSCL

UCS5ELx

Bit Clock Generator
UCxBRx
UC1CLK /T"IG @D—t
ACLE UCMSET
SMOLE [= PrescalerDivider

SMCLK

Code Example

HW_I2C.h

<msp430.h>

I2C_USCI_init(address);

I2C_USCI_set_address(address);
I2C_USCI_read_byte(address);
I2C_USCI_read_word(address,
length);

I2C_USCI_write_byte(address,

293

HW_I2C.c

"HW_I2C.h"

I2C_USCI_init(address)

P1DIR &= ~(BIT6 + BIT7);
P10OUT |= (BIT6 + BIT7);
P1SEL2 |= (BIT6 | BIT7);
P1SEL |= (BIT6 | BIT7);

UCBOCTL1 |= UCSWRST;

UCBOCTL® = (UCMST | UCMODE_3 | UCSYNC);
UCBOCTL1 = (UCSSEL_2 | UCSWRST);
UCB@BRO = 20;

UCBOI2CSA = address;

UCBOCTL1 &= ~UCSWRST;

I2C_USCI_set_address(address)
UCBOCTL1 |= UCSWRST;

UCBOI2CSA = address;
UCBOCTL1 &= ~UCSWRST;

I2C_USCI_read_byte(address)

(UCBOCTL1 & UCTXSTP);
UCBOCTL1 |= (UCTR | UCTXSTT);

(! (IFG2 & UCBOTXIFG));
UCBOTXBUF = address;

(! (IFG2 & UCBOTXIFG));
UCBOCTL1 &= ~UCTR;
UCBOCTL1 |= UCTXSTT;
IFG2 &= ~UCBOTXIFG;

(UCBOCTL1 & UCTXSTT);
UCBOCTL1 |= UCTXSTP;

UCBORXBUF ;

I2C_USCI_read_word(address,
length)

9;
(UCBOCTL1 & UCTXSTP);
UCBOCTL1 |= (UCTR | UCTXSTT);

(! (IFG2 & UCBOTXIFG));

IFG2 &= ~UCBOTXIFG;

(UCBOSTAT & UCNACKIFG)
{

}

UCBOTXBUF = address;

UCBOSTAT;

(! (IFG2 & UCBOTXIFG));

(UCBOSTAT & UCNACKIFG)
{

}

UCBOCTL1 &= ~UCTR;
UCBOCTL1 |= UCTXSTT;
IFG2 &= ~UCBOTXIFG;

UCBOSTAT;

(UCBOCTL1 & UCTXSTT);
(i =09; 1< (length - 1); i++)
(! (IFG2&UCBORXIFG));
IFG2 &= ~UCBOTXIFG;
value[i] = UCB@RXBUF;
(!'(IFG2 & UCBORXIFG));
IFG2 &= ~UCBOTXIFG;
UCBOCTL1 |= UCTXSTP;
value[length - 1] = UCBORXBUF;
IFG2 &= ~UCBOTXIFG;

9;

I2C_USCI_write_byte(address,

(UCBOCTL1 & UCTXSTP);

UCBOBCTL1 |= (UCTR | UCTXSTT);

(1 (IFG2 & UCBOTXIFG));

(UCBOSTAT & UCNACKIFG)
{

}

UCBOTXBUF = address;

UCBOSTAT;

(! (IFG2 & UCBOTXIFG));

(UCBOSTAT & UCNACKIFG)

{
}

UCBOTXBUF = value;

UCBOSTAT;

(1 (IFG2 & UCBOTXIFG));

(UCBOSTAT & UCNACKIFG)
{

}

UCBOBCTL1 |= UCTXSTP;
IFG2 &= ~UCBOTXIFG;

UCBOSTAT;

9;

BH1750.h

<msp430.h>
"delay.h"
"HW_I2C.h"

BH1750_addr

power_down

power_up

reset
cont_H_res_model
cont_H_res_mode2
cont_L_res_mode
one_time_H_res_model
one_time_H_res_mode2
one_time_L_res_mode

BH1750_init();
BH1750_write(cmd) ;
BH1750_read_word()
get_lux_value(delay time);

BH1750.c

"BH1750.h"

BH175@_init()
I2C_USCI_init(BH1750_addr);

delay ms(190);
BH1750_write(power_down);

BH1750_write(

I2C_USCI_write_byte(BH1750 addr, cmd);

BH1750_read_word(

value = 0x0000;
bytes[2] = {0x00, 0x00};

I2C_USCI_read_word(0x11, bytes, 2);

value = ((bytes[1] << 8) | bytes[0]);

value;

get_lux_value(delay_time)

lux_value = 0x00;
dly = 0x00;
S = Ox08;

(s)

BH1750_write(power_up);
BH1750_write(mode);
lux_value += BH1750_read_word();

(dly = 9; dly < delay time; dly += 1)
{

}
BH1750_write(power_down);
5--3

}

lux_value >>= 3;

delay ms(1);

)1lux_value);

<msp430.h>
"delay.h"
"HW_I2C.h"
"SW_I2C.h"
"PCF8574.h"
"lcd.h"
"BH1750.h"

GPIO_gracelInit()
BCSplus_graceInit()
USCI_BO_graceInit()
System_graceInit()
WDTplus_graceInit()
lcd_print(X_pos,

LX = 0x0000;
tmp = Ox0000;

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelnit();

BCSplus_graceInit();

USCI_BO_graceInit();

System_graceInit();

WDTplus_gracelInit();
BH1750_init();

LCD_init();
LCD_clear_home();

LCD_goto(@, 0);
LCD_putstr("MSP430G USCI I2C"

LCD_goto(0, 1);
LCD_putstr("Lux:");

(1)
tmp = get_lux_value(cont_H_res_model, 20);

(tmp > 10)
{

}
{
}

LX = tmp;

LX = get_lux_value(cont_H res model, 140);

lcd_print(11, 1, LX);

delay ms(200);

GPIO_graceInit(

P1SEL2 = BIT6 | BIT7;

9;

BIT6 | BIT7;

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_1MHZ != OxFF)

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S_@ | LFXT1S_© | XCAP_1;

USCI_BO_graceInit(

UCBOCTL1 |= UCSWRST;

UCBOCTLO® = UCMST | UCMODE_3 | UCSYNC;

UCBOCTL1 = UCSSEL_2 | UCSWRST;

UCBOI2CSA = BH1750_addr;

UCB@BRO = 20;

UCBOCTL1 &= ~UCSWRST;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_print(X_pos, y_pos,

tmp[6] = {Ox20, Ox20, 0x20, 0x20, 0x20, '\0'};

tmp[0] ((value / 10000) + 0x30);
tmp[1] (((value / 1000) % 10) + ©x30);
tmp[2] (((value / 100) % 10) + 0x30);
tmp[3] (((value / 10) % 10) + 0x30);
tmp[4] ((value % 10) + 0x30);

LCD_goto(x_pos, y pos);
LCD_putstr(tmp);

302

Simulation

The model for BH1750FVI is not available in Proteus VSM and so it cannot be simulated. Only the
pinouts are shown in the schematic below.

U1

£ RSTINMISBWTDIO P1.0ITAOCLKIACLKIADICAD |-
2L TESTISBWTCK ~ P1.1/TA0 O/UCAORXD/UGAOSOMI/ATICAT [
£ avce P1 2/TAD.1/UCAOTXDIUGAGSIMO/A2ICA2 [
2L] pvss P1.3/ADC10CLKIGAOUTIVREFVEREF-/A3/CA3 [——
P1 4/SMCLIIUCBOSTE/UCADCLKIVREF+VEREF+AJICAHTCK [—
P1.5TAD.0/UGBOCLK/UCADSTE/ASICASITMS [—2—

P1.6/TAD.1/UCBOSOMVUCBOSCLIAGICAS TDITCLK. 51—

P1 7ICAOUT/UCBOSIMO/UCBOSDA/ATICATTDOMDI —22—C3
—— Pa.orma02 P2.0TAL0 [
=2 Pamato P2ATALY [
22 P3arats P22/TA1 [
L Pazmar2 P23/TA10 [
2 Paamaoo P2 47TA1 2 2
22 Pasmao P25TA12 [
22 Pasanz XINP26TA01 (22
20 1 b3 7/TAICLKIGAOUT xouTiP27 25

SPA3067553

Explanation

gg
>

Just like USCI SPI setup, Grace is used for setting the basic parameters for USCI 12C communication.
Note only USCI_BO supports 12C communication unlike USCI SPI communication. Since our MSP430
micro is the master device in the 12C bus, USCI module is configured as 12C master. One particular
thing to observe is the I12C Slave Address. Here as shown in the screenshot below, it is 208. This is not
an important figure. Same goes for the 12C Own Address part. No interrupts are to be used and so

none of them are enabled.

Clock source

SMCLK hd

PC Slave Addr

USCIBD | \y¢\q0p

Master ma UCxSDA

[2CMode | " — = [ciceosomiuceoscL v

BRCLK —__>—— P1.7/UCBOSIMO/UCBOSDA v~

Start 1 2 b

/\

RAN

\

ACK

—- e

Bitrate = | custom ~ tgr=0us

ess m IC Own Address: El

Interrupt Enables

[JusCI_BO 12C tr.

|:| USCI_BO 12C transmit interrupt enable

|:|Start condition interrupt enable | Remove Interrupt Handler Code

ansmit interrupt enable

Generate Interrupt Handler Code

Generate Interrupt Handler Code

Out of the configuration set by Grace, 12C pins are set also in the 12C initialization function. This should
be done manually before initializing the USCI hardware.

303

(address)

P1DIR &= ~(BIT6 + BIT7);
P10OUT |= (BIT6 + BIT7);
P1SEL2 |= (BIT6 | BIT7);
P1SEL |= (BIT6 | BIT7);

UCBOCTL1 |= UCSWRST;

UCBOCTL® = (UCMST | UCMODE_3 | UCSYNC);
UCBOCTL1 = (UCSSEL_2 | UCSWRST);
UCB@BRO = 20;

UCBOI2CSA = address;

UCBOCTL1 &= ~UCSWRST;

Off all the functions used in the HW_I2C files, the following are of high importance:

address);
address,
length);
address,

Their names suggest their functionality. The codes inside them are arranged as such that they take
care of start-stop conditions generation, clock generation, etc. 12C communication needs device
address along side read-write info. Based on read-write info, the host device writes or read 12C bus.
The drawback of using 12C with these functions is the vulnerability to falling inside a loop since loops
are used in these functions widely. This setback can be overcome with timeouts.

Demo

Demo video: https://youtu.be/RkTiCcCLEDg.

304

https://youtu.be/RkTjCcCLEDg

USCI 12C — Interfacing DS1307 Real Time Clock (RTC)

This part shows another example of 12C implementation using MSP430’s USCI hardware. This time the
I12C device that is connected with a MSP430 is the popular DS1307 real time clock (RTC). This is the
last USCI hardware example.

Code Example

HW._I2C.h

<msp430.h>

I2C_USCI_init(address);
I2C_USCI_set_address(address);
I2C_USCI_read_byte(address);
I2C_USCI_read_word(address,
length);
I2C_USCI_write_byte(address,

HW_I2C.c

"HW_I2C.h"

I2C_USCI_init(address)

PIDIR &= ~(BIT6 + BIT7);
P1OUT |= (BIT6 + BIT7);
P1SEL2 |= (BIT6 | BIT7);

P1SEL |= (BIT6 | BIT7);

UCBOCTL1 |= UCSWRST;

UCBOCTL®O (UCMST | UCMODE_3 | UCSYNC);
UCBOCTL1 (UCSSEL_2 | UCSWRST);
UCB@BRO = 20;

UCBOI2CSA = address;

UCBOCTL1 &= ~UCSWRST;

305

I2C_USCI_set_address(
UCBOCTL1 |= UCSWRST;

UCBOI2CSA = address;
UCBOCTL1 &= ~UCSWRST;

I2C_USCI_read_byte(

(UCBOCTL1 & UCTXSTP);
UCBOCTL1 |= (UCTR | UCTXSTT);

(! (IFG2 & UCBOTXIFG));
UCBOTXBUF = address;

(! (IFG2 & UCBOTXIFG));
UCBOCTL1 &= ~UCTR;
UCBOCTL1 |= UCTXSTT;
IFG2 &= ~UCBOTXIFG;

(UCBOCTL1 & UCTXSTT);
UCBOCTL1 |= UCTXSTP;

UCBORXBUF;

I2C_USCI_read_word(
length)

0;
(UCBOCTL1 & UCTXSTP);
UCBOBCTL1 |= (UCTR | UCTXSTT);
(! (IFG2 & UCBOTXIFG));
IFG2 &= ~UCBOTXIFG;

(UCBOSTAT & UCNACKIFG)
{

}

UCBOTXBUF = address;

UCBOSTAT;

(! (IFG2 & UCBOTXIFG));

(UCBOSTAT & UCNACKIFG)
{

}

UCBOCTL1 &= ~UCTR;

UCBOSTAT;

address)

address)

address,

UCBOCTL1 |= UCTXSTT;
IFG2 &= ~UCBOTXIFG;

(UCBOCTL1 & UCTXSTT);
(i =9; 1< (length - 1); i++)
(! (IFG2&UCBORXIFG));
IFG2 &= ~UCBOTXIFG;
value[i] = UCB@RXBUF;
(!(IFG2 & UCBORXIFG));
IFG2 &= ~UCBOTXIFG;
UCBOCTL1 |= UCTXSTP;
value[length - 1] = UCBORXBUF;
IFG2 &= ~UCBOTXIFG;

0;

I2C_USCI_write_byte(address,
(UCBOCTL1 & UCTXSTP);
UCBOCTL1 |= (UCTR | UCTXSTT);
(! (IFG2 & UCBOTXIFG));

(UCBOSTAT & UCNACKIFG)
{

}

UCBOTXBUF = address;

UCBOSTAT;

(! (IFG2 & UCBOTXIFG));

(UCBOSTAT & UCNACKIFG)
{

}

UCBOTXBUF = value;

UCBOSTAT;

(1 (IFG2 & UCBOTXIFG));

(UCBOSTAT & UCNACKIFG)
{

}

UCBOSTAT;

UCBOCTL1 |= UCTXSTP;
IFG2 &= ~UCBOTXIFG;

9;

DS1307.h

"HW_I2C.h"

DS1307_address

sec_reg
min_reg
hr_reg
day_reg
date_reg
month_reg
year_reg
control_reg

DS1307_init();
DS1307_read(address);

DS1307_write(address, value);
bcd_to_decimal(value);
decimal_to_bcd(value);

get_time();

get_date()

set_time()

set_date()

DS$1307.c

"DS1307.h"

}rtc;

DS1307_init()

I2C_USCI_init(DS1307_address);
DS1307_write(sec_reg, 9x00);
DS1307_write(control_reg, 0x90);

DS1307_read(address)

I2C_USCI_read_byte(address);

DS1307_write(address,

I2C_USCI_write_byte(address, value);

bcd_to_decimal(value)

((value & 9x0F) + (((value & OxFO) >> 0x04) * 0x0A));

decimal_to_bcd(value)

(((value / 0x0A) << 0x04) & 0xFO) | ((value % OxBA) & OxOF);

get_time()

rtc.sec = DS1307_read(sec_reg);
rtc.sec = bcd_to_decimal(rtc.sec);

rtc.min = DS1307_read(min_reg);
rtc.min = bcd_to_decimal(rtc.min);

.hr = DS1307_read(hr_reg);
.hr = bcd_to_decimal(rtc.hr);

get_date()

rtc.day = DS1307_read(day_reg);
rtc.day = bcd_to_decimal(rtc.day);

rtc.dt = DS1307_read(date_reg);
rtc.dt = bcd_to_decimal(rtc.dt);

rtc.mt = DS1307_read(month_reg);
rtc.mt = bcd_to_decimal(rtc.mt);

rtc.yr = DS1307_read(year_reg);
rtc.yr = bcd_to_decimal(rtc.yr);

set_time()

rtc.sec = decimal_to_bcd(rtc.sec);
DS1307_write(sec_reg, rtc.sec);

rtc.min = decimal_to_bcd(rtc.min);
DS1307_write(min_reg, rtc.min);

rtc.hr = decimal_to_bcd(rtc.hr);
DS1307_write(hr_reg, rtc.hr);

set_date()

rtc.day = decimal_to_bcd(rtc.day);
DS1307_write(day_reg, rtc.day);

rtc.dt = decimal_to_bcd(rtc.dt);
DS1307_write(date_reg, rtc.dt);

rtc.mt = decimal_to_bcd(rtc.mt);
DS1307_write(month_reg, rtc.mt);

rtc.yr = decimal_to_bcd(rtc.yr);
DS1307_write(year_reg, rtc.yr);

<msp430.h>
"delay.h"
"HW_I2C.h"
"DS1307.h"
"lcd.h"

GPIO _graceInit()
BCSplus_graceInit()
USCI_BO_graceInit()
System_graceInit()
WDTplus_graceInit()
show_value(X_pos,
display_time()

main()
rtc.sec 30;

rtc.min 58;
rtc.hr = 23;

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

USCI_BO_graceInit();

System_graceInit();

WDTplus_gracelInit();

LCD_init();
LCD_clear_home();

LCD_goto(0, 0);
LCD_putstr("MSP430G USCI

DS1307_init();
set_time();

(1)

get_time();
display_time();

GPIO_graceInit(

P1SEL2 = BIT6 | BIT7;

9;

BIT6 | BIT7;

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_ O |

(CALBC1_1MHZ != OxFF)

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA 0;

BCSCTL3 = XT2S @ | LFXT1S_@ | XCAP_1;

USCI_BO_graceInit(

UCBOCTL1 |= UCSWRST;

UCBOCTL® = UCMST | UCMODE_3 | UCSYNC;

UCBOCTL1 = UCSSEL_2 | UCSWRST;

UCBOI2CSA = DS1307_address;

UCB@BRO = 20;

UCBOCTL1 &= ~UCSWRST;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

show_value(
chr = 0;

chr = ((value / 10) + 0x30);
LCD_goto(x_pos, y pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);
LCD_goto((x_pos + 1), y pos);
LCD_putchar(chr);

display time(

LCD_goto(6, 1);
LCD_putchar(' ");
LCD_goto(9, 1);
LCD_putchar(' ');
delay ms(450);

show_value(7, 1, rtc.hr);
show_value(10, 1, rtc.min);
show_value(4, 1, rtc.sec);

LCD_goto(6, 1);
LCD_putchar(':");
LCD_goto(9, 1);
LCD_putchar(':");
delay ms(450);

Simulation

DS1307 simulation encountered some weird issues but it does work.

LCD1

LMD18L

u2 =
R D 10 MSP4286 USCI [2C

R7
Time: 23-58-30 7 —1
Date: 28-03-18 S0UuT == 10k

X2 WBAT [——
DE1307 |

U1

XOUTIP2T
KINF2.6TA0A
P25TAL2
P247TA12
F23TALD
F22TALA
P2 ATAL1
F2OTA1D

=i5
L3}
=

P1.7/CAOUT/UCB0SIMO/UCBOS DA/AT/CAT/TDOTDI

P1.8/TAD. 1/UCBOSOMIMUCBOSCLIASICABTDUTCLEK
P1.5/TAQ.O/UCBOCLK/UCAOSTE/ASICASTMS
P1.4/SMCLK/UCBOSTE/CADCLIWREF HVEREF HASICASTCH,
P1.3/ADC 10CLKICAOUTVREF/VEREF-/AZICA3

P1.2TAD. I/UCADTXD/UCADSIMOIAICAS

—=au] JEST/SBWTCK P1.1/TA0.0IUCACRXD/UCAOSOMUIATCAY
—— RETINMLSBWTDIO P1.OMAOCLI/ACLIIADICAD

m
|~

ufn
e e

=
|
g

&
|
ra

MSP430G2553

315

Explanation

Since it uses the same ideas as in the previous example, there is hardly a thing to explain here.

Demo

Demo video: https://youtu.be/bhwn6I5ztks.

316

https://youtu.be/bhwn6l5ztks

Software 12C — Interfacing PCF8591 ADC-DAC

Software 12C implementation is a bit complex compared to software SPI. This is because there are
start-stop conditions and acknowledgments that are also needed to be taken care off along with data
transactions. However, it becomes the only option when USI/USCI are absent. Unlike SPI, 12C is slow
and so software implementation doesn’t affect performance significantly.

- -
- '_.

L 23

e

o

f\&}ﬁ

Shown above is an 12C-based SSD1306 OLED display. This was the display for my weather station. The
weather station was based on a Sparkfun Weather Board. During that project, | was encountering an

A

issue with the on board SHT15 relative humidity-temperature sensor chip and | could not find out the
issue for quite some time. | thought that the MCU’s TWI module was malfunctioning and so | took the
help of software 12C for rooting out the cause. Cases like these make software 12C-based testing really
useful and interesting.

Shown above is the typical timing diagram for a 12C bus. We can expect the same patterns in both
hardware 12C and software 12C but bus speed may differ. I12C bus speed become critical in some cases.
For example, consider the case of the OLED display above.

317

https://www.sparkfun.com/products/retired/10586

Code Example

SW_I2C.h

<msp430.h>

"delay.h"

SW_I2C_DIR
SW_I2C_OuT
SW_I2C_IN

SDA_pin
SCL_pin

SDA_DIR_OUT()
SDA_DIR_IN()
SCL_DIR_OUT()
SCL_DIR_IN()

SDA_HIGH()
SDA_LOW()
SCL_HIGH()
SCL_LOW()

P1DIR
P10UT
P1IN

BIT7
BIT6

{SW_I2C_DIR
{SW_I2C_DIR
{SW_I2C_DIR
{SW_I2C_DIR

{SW_I2C_ouT
{SW_I2C_ouT
{SW_I2C_ouT
{SW_I2C_ouT

SDA pin;}
~SDA_pin;}
SCL_pin;}
~SCL_pin;}

SDA _pin;}
~SDA_pin;}
SCL_pin;}
~SCL_pin;}

SDA_IN() (SW_I2C_IN & SDA_pin)
I2C_ACK OXFF
I2C_NACK 0x00

I2C_timeout 1000

SW_TI2C_init();
SW_I2C_start()
SW_TI2C_stop()

SW_I2C_read(ack);
SW_I2C_write(value);
SW_I2C_ACK_NACK(mode) ;

SW_T2C_wait_ACK();

SW_I2C.c

"SW_I2C.h"

SW_TI2C_init(

SDA_DIR_OUT();
SCL_DIR_OUT();
delay ms(1);
SDA_HIGH();
SCL_HIGH();

SW_I2C_start(

SDA_DIR OUT();

SDA_HIGH();
SCL_HIGH();
delay us(4);
SDA_LOW();
delay us(4);
SCL_LOW();

SW_I2C_stop(

SDA_DIR_OUT();
SDA_LOW();
SCL_LOW();
delay us(4);
SDA_HIGH();
SCL_HIGH();
delay us(4);

SW_I2C_read(

i 8;
i = 0;
SDA_DIR_IN();
(i > 09)
SCL_LOW();
delay us(2);
SCL_HIGH();
delay us(2);

Jj <<= 1;

(SDA_IN() != 0x00)
{

}

j++s

delay us(1);
i--;

(ack)

I2C_ACK:

SW_T2C_ACK_NACK(I2C_ACK);;

)

SW_T2C_ACK_NACK(I2C_NACK);;

)

SW_I2C_write(

SDA_DIR_OUT();
SCL_LOW();

(i > 9)

(((value & 0x80) >> 7) != 0x00)

SDA_HIGH();

SDA_LOW();

value <<= 1;
delay_us(2);
SCL_HIGH();
delay_us(2);
SCL_LOW();
delay_us(2);
i--;

SW_I2C_ACK_NACK (

SCL_LOW();
SDA_DIR_OUT();

(mode)

I2C_ACK:

SDA_LOW();

)

SDA_HIGH();

)

}

delay us(2);
SCL_HIGH();
delay us(2);
SCL_LOW();

SW_I2C_wait_ACK(
timeout = 0;

SDA_DIR_IN();

SDA_HIGH();

delay us(1);

SCL_HIGH();

delay us(1);

(SDA_IN() != 0x00)

timeout++;

(timeout > I2C_timeout)

{
SW_I2C_stop();

1;
}s

SCL_LOW();
9,

PCF8591.h

PCF8591_address 0x90

PCF8591_read_cmd (PCF8591_address | ox01)
PCF8591 write_cmd PCF8591_address

AINO 0x00
AIN1 ox01
AIN2 0x02
AIN3 0x03

Auto_Increment_Enable ox04
Auto_Increment_Disable 0x00

Four_Channel_ADC 0x00
Three_differential_Inputs 0x10
AINO_and_1_Single_AIN2_and_AIN3_Differential 0x20
All_Differential 0x30

AOut_enable 0x40
AOut_disable 0x00

PCF8591 write(control value, data_value);
PCF8591_read(control_value);

PCF8591.c

"PCF8591.h"

PCF8591 write(control_value, data_value)

SW_I2C_start();

sw_12¢_write NN) ;
SW_I2C_wait_ACK();
SW_I2C_write((control_value & OxFF));
SW_I2C wait_ACK();

SW_I2C write(data value);
SW_I2C_wait_ACK();

SW_I2C_stop();

PCF8591_read(control_value)
value = 0;

SW_I2C_start();

sw_12c_write (NN) ;
SW_I2C_wait_ACK();

SW_I2C write((control value & OxFF));
SW_I2C_ACK_NACK(I2C_ACK);
SW_I2C_stop();

SW_I2C_start();
SW_I2C_write(PCF8591 read_cmd);
SW_I2C_wait_ACK();

value = SW_I2C_read(9);
SW_I2C_wait_ACK();
SW_I2C_stop();

value;

<msp430.h>
"delay.h"
"SW_I2C.h"
"PCF8591.h"
"lcd.h"

GPIO_gracelInit()
BCSplus_graceInit()
System_graceInit()
WDTplus_gracelInit()
lcd_print(X_pos,

main(

adcl
adc2
adc3

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelnit();
BCSplus_graceInit();
System_graceInit();

WDTplus_gracelInit();

SW_TI2C_init();
LCD_init();

LCD_goto(@, ©);
LCD_putstr("A0:");

LCD_goto(9, 9);
LCD_putstr("Al1:");

LCD_goto(0, 1);
LCD_putstr("A2:");

LCD_goto(9, 1);
LCD_putstr("A3:");

(1)

{
adc@® = PCF8591_read(AOut_enable Four_Channel_ADC
Auto_Increment Disable | AIN®);
lcd_print(4, 0, adco);

adcl = PCF8591_read(AOut_enable Four_Channel_ADC
Auto_Increment_Disable | AIN1);
lcd_print(13, 0, adcl);

adc2 = PCF8591_read(AOut_enable Four_Channel_ADC
Auto_Increment_Disable | AIN2);
lcd_print(4, 1, adc2);

adc3 = PCF8591_read(AOut_enable Four_Channel_ ADC
Auto_Increment_Disable | AIN3);
lcd_print(13, 1, adc3);

PCF8591_write(AOut_enable, adc®);
delay ms(400);

}s

GPIO_gracelInit(

9;

BITO | BIT6 | BIT7;

9;

9;

9;

&= ~(BIT6 | BIT7);

BITO | BIT1 | BIT2;

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_1MHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S_ O | LFXT1S_@ | XCAP_1;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_print(

ch = ((value / 100) + 0x30);
LCD_goto(x_pos, y_pos);
LCD_putchar(ch);

ch = (((value / 10) % 10) + 0x30);
LCD_goto((x_pos + 1), y pos);
LCD_putchar(ch);

ch = ((value % 10) + 0x30);
LCD_goto((x_pos + 2), y pos);
LCD_putchar(ch);

326

Simulation

LCD1
LMD18L
<TEXT>
& .
g AE: @eg Al: B@g
[}
p o RZ2: 128 A3: 128
H g wo
fall o= R
>>> Erw oOO0Ccoooo0
-H;l alafa] a[a]a]a]=
B EEE EEREE
R2 U1 A U3
220FED_GREEN (O——5| F1 DTAOCLKIACLKIADICAD P20 | o oo p
<TEXT= S P1imA00iA1ICAY P21 =P OLK 1 -
Ta| F12TA.1AZICAZ P2.2] 518 a2
BUTTON {O——5 5 F1-3/ADC10CLKICAOUTIASVREF-VEREF/CAT2.3 2 cE a3
D2 —5 P1.4TAD 2/SMCLIVAIVREF HVEREFHCASTCHE2.4 Qs
Tio| F1-STACUSCLKASICAS TMS P2.5 Q5
LED-RED gg1. O] P1 8TALUSDO/SCLASICABTONTCLIINPR BTALY === o8
STEXT> gpp, 57 ELI/SDISDAIATICATTDOTDI XOUTP27 o= ar
RST RSTINMUSBWTDIO TESTISBWTCK [——

813

MSP430G2452
et
54
H <TEXT>
R6 R5
| |
Meer o e [
<TEX aehi2 08 O __ =
L] L]
scL OF San O A0
ety

A
. B
SCL ANO
Rwv2 soa OF | NEET v § O a1 —c
. ANz [A2
) A3 a0 ama & —o
58313 V=1836) 5 a1 .5
A2 AOUT
2208
12 mig | W Z2R
22 ExT VREF EXT>
|] Lol -
1® = JRELY i apvary CNE] D3 SDA
> <TEXT> LED-RE . I2C
PCFE581 EO-R
e u <TEXT- scL
2(A0UT) n
. e — TriG

Explanation

Just like software-based SPI, software-based 12C employs bit-banging ordinary digital I/0s. The whole
functioning of 12C protocol is implemented in software. Again, the software 12C codes are self-
explanatory. This software 12C implementation can be used for any 12C-based device. If you have gone
through the pages recommended earlier, you will understand how it is working.

For this demo, a PCF8591 8-bit ADC-DAC module is used. This ready-made board hosts four 8-bit ADC
input channels and an 8-bit DAC output channel. Off the shelf, it contains a thermistor for sensing
ambient temperature, a light-dependent resistor (LDR) for detecting light level, a potentiometer
connected across the power rail and a free ADC input. The ADC inputs can also be used in various
ways. Check the device’s datasheet for details. | did a very raw level coding for the demo, and so | just
read and showed the ADC values. The DAC is operated using the value of ADC channel 0.

327

Demo video: https://www.youtube.com/watch?v=EIRvVBRv7YY4.

328

https://www.youtube.com/watch?v=ElRvBRv7YY4

Two Wire LCD

This segment is basically the repetition of the bit-banging-based LCD example shown earlier. In that
example, we saw software SPI-based LCD driving technique. Here we will see the same but with USI-
based 12C. We can also use software 12C for the same purpose.

There are a few advantages of this module. Firstly, it is based on a PCF8574T chip that is made by NXP
(a.k.a Philips). NXP happens to be the founder of 12C communication and so the chip is well
documented in terms of I2C communication. Secondly, there are three external address selection bits
which can be used to address multiple LCDs existing on the same 12C bus. Lastly the module is compact
and readily plug-and-playable.

329

Code Example

Icd.h

<msp430.h>
"PCF8574.h"
"delay.h"

clear_display
goto_home

cursor_direction_inc
cursor_direction_dec
display_shift
display_no_shift

display_on
display_off
cursor_on
cursor_off
blink_on
blink_off

_8 pin_interface
_4_pin_interface
_2_row_display
_1 row_display
_5x10_dots
_5x7_dots

dly

CMD
DAT

BL_ON
BL_OFF

bl_state;
data_value;

LCD_init()

LCD_send(value, control_type);
LCD_4bit_send(lcd data);

LCD_putstr(*1cd_string);

LCD_putchar(char_data);

LCD_clear_home()

LCD_goto(X_pos,

330

"lcd.h"

data_value;

LCD_init()

bl _state = BL_ON;
data_value = 0x04;
PCF8574_write(data_value);

delay ms(10);

data_value = 0x30;
PCF8574_write(data_value);

data_value |= 0x04;
PCF8574_write(data_value);
delay ms(dly);

data_value &= 0xF1;
PCF8574_write(data_value);
delay ms(dly);

data_value = 0x30;
PCF8574_write(data_value);

data_value |= 0x04;
PCF8574_write(data_value);
delay ms(dly);

data_value &= 0OxF1;
PCF8574_write(data_value);
delay ms(dly);

data_value = 0x30;
PCF8574_write(data_value);

data_value |= 0x04;
PCF8574_write(data_value);
delay ms(dly);

data_value &= 0OxF1;
PCF8574_write(data_value);
delay ms(dly);

data_value = 0x20;
PCF8574_write(data_value);

data_value |= 0x04;
PCF8574_write(data_value);
delay ms(dly);

data_value &= OxF1;
PCF8574_write(data_value);
delay ms(dly);

LCD_send((_4 pin_interface | _2 row _display | _5x7 _dots), CMD);
LCD_send((display on | cursor_off | blink_off), CMD);
LCD_send((clear display), CMD);

LCD_send((cursor_direction_inc | display no_shift), CMD);

LCD_send(
(control_type)
CMD:

data_value &= 0xF4;

)

DAT:

data_value |= 0x01;

)

(bl_state)
BL_ON:

data_value |= 0x08;

)

BL_OFF:

data_value &= 0OxF7;

)

}

PCF8574_write(data_value);
LCD_4bit_send(value);
delay ms(10);

LCD_4bit_send(lcd data)
temp = 0x00;

temp = (lcd_data & 0xF0);
data_value &= 0OxOF;
data_value |= temp;
PCF8574_write(data_value);

data_value |= 0x04;
PCF8574_write(data_value);
delay ms(dly);

data_value &= 0xF9;
PCF8574_write(data_value);
delay ms(dly);

temp = (lcd _data & ©Ox0F);
temp <<= 0x04;
data_value &= OxOF;

control_type)

data_value |= temp;
PCF8574_write(data_value);

data_value |= 0x04;
PCF8574_write(data_value);
delay ms(dly);

data_value &= 0xF9;
PCF8574_write(data_value);
delay ms(dly);

LCD_putstr(*1lcd_string)

(*lcd_string = "\0@")
{

}s

LCD_send((*1cd string++), DAT);

LCD_putchar(char_data)

LCD_send(char_data, DAT);

LCD_clear_home()

LCD_send(clear_display, CMD);
LCD_send(goto_home, CMD);

LCD_goto(

(y_pos == 0)

LCD_send((0x80 | x_pos), CMD);

LCD_send((0x80 | 0x40 | x_pos),

<msp430.h>
"delay.h"
"I2C.h"
"PCF8574.h"
"lcd.h"

GPIO_graceInit();
BCSplus_graceInit()
USI_graceInit()

System_gracelInit()
WDTplus_graceInit()
show_value(value);

main(
95
txt1[] = {"MICROARENA"};
txt2[] = {"SShahryiar"};

txt3[] = {"MSP-EXP430G2"};
txtd4[] = {"Launchpad!"};

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_graceInit();

USI_graceInit();

System_graceInit();

WDTplus_graceInit();

LCD_init();
LCD_clear_home();

LCD_goto(3, 9);
LCD_putstr(txtl);
LCD_goto(3, 1);
LCD_putstr(txt2);
delay_ms(2600);

LCD_clear_home();
= 0; s < 12; s++)
LCD_goto((2 + s), 0);
LCD_putchar(txt3[s]);
delay ms(60);
= 0; s < 10; s++)
LCD_goto((3 + s), 1);

LCD_putchar(txt4[s]);
delay _ms(60);

}

delay ms(2600);

LCD_clear_home();

LCD_goto(3, 0);
LCD_putstr(txtl);

(1)

show_value(s);
S++;
delay ms(200);

GPIO_graceInit(

9;

BIT6 | BIT7;

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS 0;

(CALBC1_1MHZ != OxFF) {

DCOCTL = ©x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_G;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

USI_graceInit(

USICTLO |= USISWRST;

USICTLO = USIPE7 | USIPE6 | USIMST | USISWRST;

USICTL1 = USII2C | USIIE | USIIFG;

USICKCTL = USIDIV_7 | USISSEL_2 | USICKPL;

USICNT = USIIFGCC;

USICTLO &= ~USISWRST;

USICTL1 &= ~(USIIFG + USISTTIFG);

System_graceInit(

IFG1l &= ~OFIFG;

__delay_cycles(590);
(IFG1 & OFIFG);

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

show_value(
ch = 0x00;

ch = ((value / 100) + 0x30);
LCD_goto(6, 1);
LCD_putchar(ch);

ch = (((value / 10) % 10) + 0x30);
LCD_goto(7, 1);
LCD_putchar(ch);

ch = ((value % 10) + 0x30);
LCD_goto(8, 1);
LCD_putchar(ch);

339

Simulation

LCD1

LAHEL
=TEXT=

88 wE. msmmaszs

sfel=l sfmfa| =f=|=|=|=|=|=]|=

uq wlefm) wlalm| | sl S) m
= FZ0 PLOTADCLEMCL KACAR =
g= 1]
P21 P ATal YACAT T

P22 IF1 2Tal. IARTAT

P23 FLAADCHICLRCAOUTMAANREF-WEREF-CA3 =il

) BACELIGHT

LRl

JA3EAA2Y

*Note Proteus VSM could not simulate 12C-based simulations. The simulation here only shows
connections.

Explanation

The code utilizes the same USI-based 12C library as in the USI-I2C example. Just like the software SPI-
based LCD example, the main difference is the way the LCD is driven. LCD data and commands are
sent through 12C bus and the PCF8574 GPIO expander IC converts these to parallel outputs. The
expanded GPIOs are then used to drive the LCD in 4-bit mode.

340

-l- e e) --M- T i R
A e T~ s el ey

Demo video: https://www.youtube.com/watch?v=y6HOQATVucNk.

341

https://www.youtube.com/watch?v=y6HQATVucNk

One Wire (OW) — Interfacing DS18B20 Temperature Sensor

One Wire (OW) or single wire communication is different from other more common and conventional
communication platforms like SPI or I12C in terms of data exchange behavior. OW communication is
also not very much popular compared to SPI, UART (RS232), 12C, RS485, etc. From device to device,
the way of exchanging data varies but what’'s common is the fact that all devices that use this
communication method use a sort of time-slotting mechanism. Ones and zeros are defined by high
pulse time over a fixed period. This trick is widely used in infrared remote controllers. One major
advantage of OW communication is the fact that no special or dedicated hardware block is needed to
implement it. All that is typically needed is a digital I/O pin. A timer can be used for tracking time-slots
but it is optional. External interrupts can also be optionally used alongside the timer. DS18B20 one
wire digital temperature sensor from Dallas semiconductor uses this communication protocol.

BOTTOM VIEW

DS18B20 To-92
Package

PIN ASSIGNMENT

Code Example

one_wire.h

<msp430.h>
"delay.h"

DS18B20_DIR P2DIR
DS18B20_OUT_PORT P20UT
DS18B20_IN_PORT P2IN
DS18B20_PIN BITO

DS18B20_OUTPUT() {DS18B20_DIR |= DS18B20_PIN;})
DS18B20_INPUT() {DS18B20_DIR &= ~DS18B20_PIN;})

DS18B20_IN() (DS18B20_IN_PORT & DS18B20_PIN)

DS18B20_OUT_LOW() {DS18B20_OUT_PORT &= ~DS18B20_PIN;})
DS18B20_OUT_HIGH() {DS18B26_OUT_PORT |= DS18B20_PIN;})

TRUE
FALSE

342

onewire_reset()
onewire_write_bit(bit value);
onewire_read_bit()3
onewire_write(value);
onewire_read()

one_wire.c

"one_wire.h"

onewire_reset()
res = FALSE;

DS18B20 _OUTPUT();
DS18B20 OUT_LOW();
delay _us(480);
DS18B20 OUT_HIGH();
delay_us(60);

DS18B20_INPUT();
res = DS18B20 IN();
delay_us(480);

res;

onewire_write_bit(bit value)

DS18B20_OUTPUT();
DS18B20_OUT_LOW();

(bit_value)
{
delay us(104);
DS18B20_OUT_HIGH();

onewire_read_bit(

DS18B20 OUTPUT();
DS18B20 OUT_LOW();
DS18B20 OUT_HIGH();
delay us(15);
DS18B20 INPUT();

(DS18B20_IN());

onewire_write(

DS18B20_OUTPUT();
(s < 8)

((value & (1 << s)))

{
DS18B20_OUT_LOW();

_delay cycles(1);
DS18B20_OUT_HIGH();
delay us(69);

DS18B20_OUT_LOW();
delay us(690);
DS18B20 OUT_HIGH();
_delay_cycles(1);

onewire_read(

S = 0x00;
value = 0x00;

(s < 8)
DS18B20 OUTPUT();
DS18B20_OUT_LOW();
_delay cycles(1);
DS18B20 OUT_HIGH();

DS18B20_INPUT();
(DS18B20_IN())
{

}

value |= (1 << s);

delay_us(60);

S++;

value;

DS18B20.h

<msp430.h>
"delay.h"
"one_wire.h"

convert_T
read_scratchpad
write_scratchpad
copy_scratchpad
recall E2
read_power_supply
skip_ROM

resolution

DS18B20_init()3
DS18B20_get_temperature(

DS18B20.c

"DS18B20.h"

DS18B20_init()

onewire_reset();
delay_ms(100);

DS18B20_get_temperature(

msb 0x00;
1sb = 0x00;
temp = 0.0;

onewire_reset();

onewire_write(skip_ROM);

onewire_write(convert_T);
(resolution)

12:

delay_ms(750);

3

11:

delay_ms(375);

3

10:

delay ms(188);

B

delay ms(94);

J

}

onewire_reset();

onewire_write(skip ROM);
onewire_write(read_scratchpad);

1sb = onewire_read();
msb = onewire_read();

temp = msb;
temp *= 256.0;
temp += 1sb;
(resolution)
12:

*= 9.0625;

)

}

delay ms(490);

(temp);

<msp430.h>
"delay.h"
"SW_I2C.h"
"PCF8574.h"
"one_wire.h"
"DS18B20.h"
"lcd.h"

symbol[8] =

0x00, Ox06, Ox09, Ox09, Ox06, Ox00, Ox00, Ox00
};

GPIO_graceInit()

BCSplus_graceInit()3

System_graceInit()3

WDTplus_gracelInit()3

lcd_symbol()

print_C(X_pos, value);

print_I(X_pos, value);

print_D(X_pos, value,

points);

print_F(X_pos, value,
points);

main(

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_gracelInit();

System_graceInit();

WDTplus_graceInit();

DS18B20_init();
LCD_init();
lcd_symbol();

LCD_goto(1, 0);
LCD_putstr("MSP430 DS18B20");

LCD_goto(0, 1);
LCD_putstr("T/ C");
LCD_goto(2, 1);
LCD_send(0, DAT);

(1)
t = DS18B20_get_temperature();
print_F(9, 1, t, 3);

delay_ms(1000);
¥

GPIO_gracelInit(

9;

&= ~(BIT6 | BIT7);

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_© | DIVS_@;

(CALBC1_8MHZ != OxFF)

__delay_cycles(100000);

DCOCTL = 0x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S_ O | LFXT1S_@ | XCAP_1;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_symbol(
9;
LCD_send(0x40, CMD);
= 0; s < 8; s++)

LCD_send(symbol[s], DAT);
}

LCD_send(0x80, CMD);

print_C(X_pos, y_pos,
ch[5] = {0x20, 0x20, 0x20, 0x20, '\0'};

(value < 0x00)

{
ch[@] ox2D;
value -value;

((value > 99) && (value <= 999))
ch[1] ((value / 100) + 0x30);
ch[2] (((value % 100) / 10) + 0x30);
ch[3] ((value % 10) + 0x30);

((value > 9) && (value <= 99))
ch[1] (((value % 100) / 10) + 0x30);
ch[2] ((value % 10) + 0x30);
ch[3] 0x20;

((value >= 0) && (value <= 9))
ch[1] ((value % 10) + 0x30);
ch[2] 0x20;

ch[3] 0x20;
}

LCD_goto(x_pos, y pos);
LCD_putstr(ch);

print_I(X_pos, y_pos,
ch[7] = {@x20, 0x20, 0x20, 0x20, 0x20, 0x20, '\0'};
(value < 0)

ch[9] ox2D;
value -value;

ch[@] 0x20;

(value > 9999)

ch[1] ((value / 10000) + 0x30);

ch[2] (((value % 10000)/ 1000) + 0x30);
ch[3] (((value % 1000) / 100) + 0x30);
ch[4] = (((value % 100) / 10) + 0x30);
ch[5] = ((value % 10) + 0x30);

((value > 999) && (value <= 9999))

ch[1] = (((value % 10000)/ 1000) + 0x30);
ch[2] (((value % 1000) / 100) + ©x30);
ch[3] (((value % 100) / 10) + 0x30);
ch[4] = ((value % 10) + 0x30);

ch[5] = 0x20;

((value > 99) && (value <= 999))

ch[1] (((value % 1000) / 100) + 0x30);
ch[2] (((value % 100) / 10) + ©x30);
ch[3] ((value % 10) + 0x30);

ch[4] = 0x20;

ch[5] 0x20;

((value > 9) && (value <= 99))

ch[1] (((value % 100) / 10) + 0x30);
ch[2] ((value % 10) + 06x30);

ch[3] 0x20;

ch[4] 0x20;

ch[5] 0x20;

ch[1] ((value % 10) + 0x30);
ch[2] 0x20;
ch[3] 0x20;
ch[4] 0x20;
ch[5] 0x20;
}

LCD_goto(x_pos, y pos);
LCD_putstr(ch);

print_D(X_pos,
points)

ch[5] = {ox2E, ox20, 0x20, '\0'};

ch[1] = ((value / 100) + 0x30);

(points > 1)

{
ch[2] = (((value / 10) % 10) + 0x30);

(points > 1)
{

}

ch[3] = ((value % 10) + 0x30);

}

LCD_goto(x_pos, y pos);
LCD_putstr(ch);

print_F(X_pos,
points)

{
tmp = Ox0000;

tmp = value;
print_I(x_pos, y_pos, tmp);
tmp = ((value - tmp) * 1000);

(tmp < 9)

tmp = -tmp;

(value < 0)
value = -value;

LCD_goto(x_pos, y_pos);
LCD_putchar(0x2D);

LCD_goto(x_pos, y _pos);
LCD_putchar(0x20);

((value >= 10000) && (value < 100000))
print_D((x_pos + 6), y _pos, tmp, points);
((value >= 1000) && (value < 10000))
print_D((x_pos + 5), y_pos, tmp, points);
((value >= 100) && (value < 1000))
print_D((x_pos + 4), y pos, tmp, points);

((value >= 10) && (value < 100))
print_D((x_pos + 3), y_pos, tmp, points);
(value < 10)

print_D((x_pos + 2), y_pos, tmp, points);

Simulation

LCD1
LMOTBL
[}
R6 MsF438 D515EZA
10k
" Trog a5, 9
L) &n " o
=1 F20 P1.OMAOCLK/ACLK/AQICAD a9 M3 o = ol T 8D
o] P21 P1.1TAQ.GIATICAT >5> @rw ooooocoo
<] P22 F1.2TAD. 1IAZICAZ =T=[= =T=]=
—2i]| F23 P13(ADCI10CLKICAOUT/ASIVREF-/VEREF-ICA3 b +|=|m - E B R
—5] P24 P14TTADZ/SMOLIIAVREF+VEREF +/CASTCK
=] F2s P1.5TADOFSCLKIASICASTMS s
52 XINPZETAD.1P1.6/TAD. /SDO/SCLIABICABI TONTCLK PO o=
7| XouTP27 P1.7/SDI/SDA/ATICATTDOITDI P12
——] TESTISBWTCK RET/NMYSEWTDIO F2 o=
MSF430G2452 Ef g0 BackLight
[| 510
U1 il T
il T
3
FoI (o 10k il
1] enp ® o Aol o PCFE574
o L
DS18B20
4 & DSW1
DIFSW_3

353

Explanation

One wire communication is detailed in these application notes from Maxim:

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126

https://www.maximintegrated.com/en/app-notes/index.mvp/id/162

These notes are all that are needed for implementing the one wire communication interface for
DS18B20. Please go through these notes for details. The codes are self-explanatory and are
implemented from the code examples in these app notes.

Demo

fm wlan wila

Demo video: https://youtu.be/GOrSDnkcSZA.

354

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126
https://www.maximintegrated.com/en/app-notes/index.mvp/id/162
https://youtu.be/G0rSDnkcSZA

One Wire (OW) — Interfacing DHT22 Hygrometer Sensor

Like DS18B20, DHT22 (a.k.a AM2302) digital relative humidity-temperature or hygrometer sensor uses
time-slotting principle over one wire to transfer data to its host controller. Apart from other technical
specs, these sensors differ in terms of time-slots and in the process of data exchanging and
communication bus arbitration. Since data is transferred digitally over one wire, there is no need for
such sensors to be present on board and close to the host MCU. Thus, such sensors can be placed
significantly far from the host micro. This is not so easily possible with analog sensors or with sensors
using multiple wires. This feature is what makes OW communication method an impressive one.

Code Example

DHT22.h

<msp430.h>
<delay.h>

DHT22_DIR P2DIR
DHT22_OUT_PORT P20UT
DHT22_IN_PORT P2IN
DHT22_PIN BITO

DHT22_DIR_OUT() {DHT22_DIR |= DHT22_PIN;})
DHT22_DIR_IN() {DHT22_DIR &= ~DHT22_PIN;})

DHT22_IN() (DHT22_IN_PORT & DHT22_PIN)

DHT22_OUT_LOW() {DHT22_OUT_PORT &= ~DHT22_PIN;})
DHT22_OUT_HIGH() {DHT22_OUT_PORT |= DHT22_PIN;})

TRUE
FALSE

values[5];

DHT22_init();
DHT22_get_byte(
DHT22_get_data(

355

DHT22.c

"DHT22.h"

values[5];

DHT22_init(

DHT22_DIR_IN();
delay ms(1000);

DHT22_get_byte(

s = 8;
value = 0;

DHT22_DIR_IN();
(s > 0)
value <<= 1;

(DHT22_IN() == FALSE);
delay us(390);

(DHT22_IN())

value |= 1;

(DHT22_IN());

DHT22_get_data(
chk = FALSE;
s = 0;
check_sum = 0;

DHT22_DIR_OUT();

DHT22_OUT_HIGH();
DHT22_OUT_LOW();

delay ms(1);
DHT22_OUT_HIGH();

delay us(32);
DHT22 DIR_IN();

chk = DHT22_IN();
delay us(2);

(chk == TRUE)
{

}

delay us(89);

1;

chk = DHT22_IN();

(chk == FALSE)
{

}

delay us(89);

2;

(s =9; s <=4; s += 1)

{
}

DHT22_DIR_OUT();
DHT22_OUT_HIGH();

values[s] = DHT22_get_byte();

(s = 9; s < 4; s++)

{

check sum += values[s];

}

(check_sum != values[4])

3;

<msp430.h>
"delay.h"
"SW_I2C.h"
"PCF8574.h"
"lcd.h"
"DHT22.h"

symbol[8] =

OXx06, Ox09, Ox09, OX06, OX00, 0x00, OX00

GPIO_graceInit()3

BCSplus_graceInit()3

System_graceInit()

WDTplus_gracelInit()

lcd_symbol();

print_C(X_pos, value);

print_I(X_pos, value);

print_D(X_pos, value,

points);

print_F(X_pos, value,
points);

main()

value = 0.0;
state = 0;

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelnit();
BCSplus_graceInit();
System_graceInit();

WDTplus_graceInit();

DHT22_init();
LCD_init();
lcd_symbol();

(1)
state = DHT22_get_data();
(state)
1:
LCD_goto(0, 0);
LCD_putstr("No Sensor Found!");
LCD_goto(9, 1);
LCD_putstr (" ");
5
2:
LCD_goto(0, 0);
LCD_putstr("Checksum Error!");

LCD_goto(0, 1);
LCD_putstr (" ")

}

value = ((values[©] * 256.0 + values[1]) * 0.1);

LCD_goto(0, 0);
LCD_putstr("R.H/%: ");
print_F(11, ©, value, 1);

value = ((values[2] * 256.0 + values[3]) * 0.1);

LCD_goto(0, 1);
LCD_putstr("T/ C : ");
LCD_goto(2, 1);

LCD_send(©, DAT);
print_F(11, 1, value, 1);

delay ms(1000);

};

GPIO_graceInit(

9;

&= ~(BIT6 | BIT7);

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS 0;

(CALBC1_8MHZ != OxFF)

__delay_cycles(100000);

DCOCTL = 0x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S_@ | LFXT1S_© | XCAP_1;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_graceInit(

WDTCTL = WDTPW | WDTHOLD;

lcd_symbol(
H
LCD_send(0x40, CMD);

(s = 9; s < 8; s++)

{
}

LCD_send(0x80, CMD);

LCD_send(symbol[s], DAT);

print_C(X_pos, y_pos,
ch[5] = {0x20, 0x20, Ox20, 0x20, '\0'};
(value < 0x00)

ch[@] ox2D;
value -value;

ch[@] 0x20;

((value > 99) && (value <= 999))
ch[1] ((value / 100) + 0x30);
ch[2] (((value % 100) / 10) + 0x30);
ch[3] ((value % 10) + 0x30);

((value > 9) && (value <= 99))

ch[1] (((value % 100) / 10) + 0x30);
ch[2] ((value % 10) + 0x30);
ch[3] 0x20;

((value >= 0) && (value <= 9))
ch[1] ((value % 10) + 0x30);
ch[2] = ox20;
ch[3] 0x20;

}

LCD_goto(x_pos, y pos);
LCD_putstr(ch);

print_I(X_pos, y_pos,

ch[7] = {ox20, 0x20, Ox20, Ox20, Ox20, 0x20, '\0'},;

(value < 0)

ch[@] = ox2D;
value -value;

ch[@] 0x20;

(value > 9999)

ch[1]
ch[2]
ch[3]
ch[4]
ch[5]

((value / 10000) + ©x30);
(((value % 10000)/ 1000) + 0x30);
(((value % 1000) / 100) + 0x30);
(((value % 100) / 10) + 0x30);
((value % 10) + 0x30);

((value > 999) && (value <= 9999))

ch[1]
ch[2]
ch[3]
ch[4]
ch[5]

(((value % 10000)/ 1000) + 0x30);
(((value % 1000) / 100) + 0x30);
(((value % 100) / 10) + ©x30);
((value % 10) + 0x30);

0x20;

((value > 99) && (value <= 999))

ch[1]
ch[2]
ch[3]
ch[4]
ch[5]

(((value % 1000) / 100) + 0x30);
(((value % 100) / 10) + 0x30);
((value % 10) + 0x30);

0x20;

0x20;

((value > 9) && (value <= 99))

ch[1]
ch[2]
ch[3]
ch[4]
ch[5]

(((value % 100) / 10) + 0x30);
((value % 10) + 0x30);

0x20;

0x20;

0x20;

ch[1]
ch[2]
ch[3]
ch[4]
ch[5]

((value % 10) + 0x30);
0x20;
0x20;
0x20;
0x20;

}

LCD_goto(x_pos, y_pos);
LCD_putstr(ch);

print_D(X_pos,
points)

ch[5] = {ox2E, ox20, 0x20, '\0'};
ch[1] = ((value / 100) + 0x30);

(points > 1)

{
ch[2] = (((value / 10) % 10) + 0x30);

(points > 1)

{
ch[3] = ((value % 10) + 0x30);

}

LCD_goto(x_pos, y pos);
LCD_putstr(ch);

X_pos,

tmp = 9x0000;

tmp = value;
print_I(x_pos, y_pos, tmp);
tmp = ((value - tmp) * 1000);

(tmp < 9)
{

tmp = -tmp;
}

(value < 0)

value = -value;
LCD_goto(x_pos, y pos);
LCD_putchar(0x2D);

LCD_goto(x_pos, y_pos);
LCD_putchar(0x20);

((value >= 10000) && (value < 100000))

print_D((x_pos + 6), y_pos, tmp, points);
((value >= 1000) && (value < 10000))

print_D((x_pos + 5), y_pos, tmp, points);
((value >= 100) && (value < 1000))

print_D((x_pos + 4), y pos, tmp, points);

((value >»= 10) && (value < 100))

print_D((x_pos + 3), y_pos, tmp, points);

(value < 10)

print_D((x_pos + 2), y _pos, tmp, points);

Simulation
LCD1
LMO18L
n
R6 Ho Sensor Found!
10k U2
" L
CHg.] . 2= P20 P1 OTAOCLKIACLKIAQICAQ DO 02 o mmeoon
0 P21 P1_1/TAD.OMATCAT = e W cooooooo
3] P22 F1_2ITAD. AICA2 =Tals sTal=l=
—H5] F23 P1.3/ADCI0CLKICAOUTIASVREF-VEREF-/CAS - S EEREEEEEEER
2 P24 P1.47TAD 2/SMOLK/AVREF +VEREF+/GASTCK u3
2 Fas P1.5TAQ.OISCLKIASICASITMS = .
=] XINP2.6/TA0.1P1 6TAD.1/SDO/SCLIASICABITDITCLK [scL Pof—
2 xoute27 P4 T/SDISDAATICATITDOTD spA P12
=1 TESTISBWTCHK RET/MMUSBWTDIO — F2 57
MSP430G2452 R3 INT gﬁ [ag O Back Ught
]]
U1 A ;: AD F5 ::?
1 = k [3m l =2 n1{2
{woo - -
£~ DAt E 10k
et A PCFa574
e 9 ® Mo
A

= 4 ﬂ H H DSW1
DIPSW_3

Explanation

Unlike 12C, SPI, UART and other communication methods, one wire communication has no fixed
communication standard. A perfect example is the difference between the way of communicating
with DHT22 and DS18B20. Although they appear to share a similar methology but the communication
protocols are different.

Hostpulls up i Senser pulls up?i- —_ E'l'mnsmissian

: - - : T i)

- and wait for i igetreadvto | Seasor output : Sensor output 1 bit data of "1" | ; ended RL pulls up

sensor's response | {outputsignal | 1bit data of"0" :
VeC s b i

iHostsend | ! Sensor S:ndé ! Sensor cutput altemative deta of "0" or "1" | Sensor

..; start signal = i outresponsc | based upon real valuc : pulls low
: * - - “— -

I
Host's signal Sensor's signal

MaxDetect 1-wire bus illustration

365

Shown above is the timing diagram of DHT22. If you compare the timings for ones and zeroes in both
devices you’ll notice that these timings are way different. Same goes for the data, command and
control processes. Here again the datasheet of DHT22 is used to create the library for DHT22 and the
process is just manipulation of a single GPIO pin.

Demo

SELL Lt LARLERD

e i i S EmmE LT

Demo video: https://youtu.be/Emi-skFcs4A.

366

https://youtu.be/Emi-skFcs4A

USCI - UART

Serial communication is perhaps the most widely used communication method for interfacing a PC or
other machines with a micro and over long distances. With just two cross-connecting wires, we can
achieve a full-duplex point-to-point communication. Owing to its simplicity, range and wide usage, it
is the communication interface backbone that is used for GSM modems, RF modules, Zigbee devices
like CC2530, BLE devices like CC2540, Wi-Fi devices like CC3200, etc. Other forms of advance serial
communications have their lineages tracing back to it, for example, RS-485, LIN, IrDA, etc.

MSP430

Microcontroller TXD PC/Serial Device

Serial Communication Bus

Shown below is a demo of HMC1022-based LED compass. To communicate with this chip to get
compass heading, we need to send-receive data via UART.

To learn more about UART visit the following link:
https://learn.mikroe.com/uart-serial-communication/

367

https://learn.mikroe.com/uart-serial-communication/

Code Example

<msp430.h>
"delay.h"
"lcd.h"

rx = 0;

GPIO_graceInit()
BCSplus_graceInit()3
USCI_AO_graceInit()3
System_graceInit()
WDTplus_gracelInit()
UART_putc(ch);
UART_puts(*str);

vector=USCIABORX_VECTOR
USCIORX_ISR_HOOK (

rx = UCAORXBUF;

tx = 0x20;

WDTCTL = WDTPW | WDTHOLD;

GPIO_graceInit();

BCSplus_gracelInit();

USCI_AO@_gracelnit();

System_graceInit();

WDTplus_graceInit();

UART_puts("\f");

UART_puts("MSP430G2553 UART Demo\n");
UART_puts("Shawon Shahryiar\n");
UART_puts("https://www.facebook.com/MicroArena\n");

LCD_init();
LCD_goto(O,

LCD_putstr("
LCD_goto(0,

LCD_putstr("RXD:");
(1)

LCD_goto(15, 0);

LCD_putchar(tx);

UART_putc(tx);
tTX++;

(tx > Ox7F)
{

}

LCD_goto(15, 1);
LCD_putchar(rx);

tx = 0x20;

delay _ms(400);

GPIO_graceInit(

P1SEL2 = BIT1 | BIT2;

9;

BIT1 | BIT2;

9;

9;

BITO | BIT1 |

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM_@ | DIVS_@;

(CALBC1_1IMHZ != OxFF) {

DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

BCSCTL1 |= XT20FF | DIVA_@;

BCSCTL3 = XT2S @ | LFXT1S_© | XCAP 1;

USCI_AQ _graceInit(

UCAOGCTL1 |= UCSWRST;

UCARCTL® = UCPAR | UCMODE_0;

UCABCTL1 = UCSSEL_2 | UCSWRST;

UCAGMCTL = UCBRF_@ | UCBRS_1;

UCA®BRO = 104;

UCAOCTL1 &= ~UCSWRST;

System_graceInit(

IFG2 &= ~(UCAORXIFG);

IE2 |= UCA®RXIE;

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

UART_putc(ch)

(1 (IFG2 & UCAGTXIFG));
UCA@TXBUF = ch;

UART_puts(*str)
(*str 1= 0)

(' (IFG2 & UCAOTXIFG));
UCAOTXBUF = *str++;

}s

373

Simulation

R5

0 2 = =
0 a7k

FIE | BET LCD1

ors | = RE' =z LMoTaL

= <TEXT>

= <TEXT=

o g ut

i [=== -

o G RST 0% RET/INMUSBWTDIO P1.OMAOCLK/ACLKIAQICAD _§ {0 LED_RED
o o -~ TESTISBWTCK P1.1/TAD GIUCADRXD/UCADSOMUAT/CAT o=

gl i P1.27TAD A/UCADTXDAUCADSIMOIAZICAZ

P1 J/ADC10CLKICAOUTREF-VEREF-IAICAS :2—0 BUTTON 28H z =EE s
= P 4/SMELIUCBOSTEIGADCLI/NVREF + NEREF #/AUCATCK [~ 2EL Br¥w BoHB3BEE
P1.5TA0.0/UCBOCLKIUCAOSTEIASICASITMS (5 u[m wfafafa]a]e]a]=
P1.8TAD. 1/UCEOSOMIUCBOSCLIASICASITDNTOLK [—e——0) LEn,GREEi NNGREE K
P1.7/CAOUTIUCE0SIMOIUCBOSDA/ATIGAT/TDOITDI F U3
<TEXT>
u u
| F2.0MA1.0 _2 g_ D @0 =5
BUTTON F2.17A11 o= SpCLK a1 =

u| F22MALY [—=] 518 a2

P23TA10 2 oe a3

RST USER P2 4TA1 2 12 4

P2 5malz |2 as

o = g T HINF2TA T | e

| | xouTiPz7 & a7

MSP430G2553 LT}
as =2
L <TEXT> b
4084
<TEXT>

MSP430G2553 is used for this demo since it has UART-supporting USCI module. An important thing to
note before trying to use the UART is the jumper settings shown below:

BsuluarT
[Hu HuART

et

TPZ2 TP4A TPE TPE TP

W
Pad

SENITE
[Hu luART

Z

Launch

2

£
i
2
E
)]
£

q

P1.4 CUART) ‘-'
P1.2 (UART) g
P1.3 (S2)

P1.4

E N ECEC KN]
I

.. R32
LED2

P1.
P10

“i2 LEDINER

P1.8 (LED1>

JUCC

The photo shows that the TX-RX jumpers are connected in way perpendicular to other jumpers.
However, by default, jumpers are connected the other way around, i.e. software UART. If the jumpers
are setup as shown, we can access the on-board USB-UART converter, i.e. hardware UART. We will
need this piece of hardware for communicating with a computer.

Using GRACE, we setup the USCI module in asynchronous UART mode with typical settings like 9600

baudrate and 8-bit data transfer mode. GRACE also takes care of baud rate generation calculation.
UART data reception interrupt is also used to quickly respond to incoming characters.

374

Clock source UCxRX
SMCLK » |—|_|—|_|—|_ USCI_AQ P1.1/UCADRXD, U CADSOMI
UART Mode | YCxTX
BRCLK —Q— P1.2/UCANTXD/UCAQSIMO e
Farity: Stop:
 Start Do Dx 8-bit ~ | |MNom ~| |Or ~
Al CO e
—- -l
Baud= 9600 bps w tgr=104.2 us
Set Custom bps

Interrupt Enables
|:| USC_AD UART transmit interrupt enable

USCI_AD UART receive interrupt enable

UCAOCTL1 |= UCSWRST;

UCAOCTLO = UCPAR | UCMODE_0;

Generate Interrupt Handler Code

Remove Interrupt Handler Code

View All Interrupt Handlers

375

UCAGCTL1 = UCSSEL_2 | UCSWRST;

UCAGMCTL = UCBRF_© | UCBRS_1;

UCAGBRO = 104,

UCAOCTL1 &= ~UCSWRST;
Right after initialization of all required hardware, the UART starts sending some strings.

UART_puts("\f");

UART_puts("MSP430G2553 UART Demo\n");
UART_puts("Shawon Shahryiar\n");
UART_puts("https://www.facebook.com/MicroArena\n");

The following functions transmit data via UART. The first one can transmit one character at a time
while the second can transmit a string of characters. In both cases, it is checked if the last character
has been successfully sent before sending a new character.

UART_putc(ch)

(! (IFG2 & UCAGTXIFG));
UCAOTXBUF = ch;
UART_puts(*str)

(*str 1= 0)

(1 (IFG2 & UCA®TXIFG));
UCA@TXBUF = *str++;

}s

Since data recption interrupt is used, data received is extracted from UART reception ISR.

vector=USCIABORX_VECTOR
USCIORX_ISR_HOOK (

rx = UCAORXBUF;

376

Whenever a new character is received by the UART, RX interrupt fires up and catches the sent
character. The received character is shown on a LCD. In the main loop, the code sends out ASCII
characters and the LCD shows what has been sent out.

CCS IDE comes with a built-in serial terminal interface. You can that or you can use third-party software

like CoolTerm, Putty, Termite, Docklight, RealTerm, Tera Term, etc to check or monitor serial
communication transactions.

Demo

Demo video: https://www.youtube.com/watch?v=Mm2i4rVGyoo.

377

https://www.youtube.com/watch?v=Mm2i4rVGyoo

Software UART

Software UART is seldom needed but it comes really useful in absence of hardware UART. In some
cases, we may not have the luxury of using hardware UART. Hardware UART block may also be absent.
We already know that USCI module can be used for implementing hardware UART but this block is not
present in chips like MSP430G2452. In such devices, we have to use software-generated UART.
Software UART uses ordinary digital 1/Os and delays. Both additionally and optionally external
interrupts and timers can be used for better results. Owing to its hardware independency and
simplicity, it is very robust. However extra coding and therefore extra memory spaces are needed.

Code Example

SW_UART.h

<msp430.h>
"delay.h"

SW_UART_RXD_DIR P1DIR
SW_UART_TXD_DIR P1DIR
SW_UART_RXD_OUT P10UT
SW_UART_TXD_OUT P10UT
SW_UART_RXD_IN P1IN
SW_UART_RXD_IN_RES P1REN

SW_UART_RXD_PIN BIT1
SW_UART_TXD_PIN BIT2

SW_UART_RXD_DIR_IN() {SW_UART_RXD_OUT |= SW_UART_RXD_PIN;
SW_UART_RXD_DIR &= ~SW_UART_RXD_PIN; SW_UART_RXD_IN_RES |=
SW_UART_RXD_PIN;} (0)

SW_UART_TXD_DIR_OUT() {SW_UART_TXD_DIR |= SW_UART_TXD_PIN;}

SW_UART_TXD_OUT_HIGH() {SW_UART_TXD_OUT |= SW_UART_TXD_PIN;}
SW_UART_TXD_OUT_LOW() {SW_UART_TXD_OUT &= ~SW_UART_TXD_PIN;}

SW_UART_RXD_INPUT() (SW_UART_RXD_IN & SW UART RXD_PIN)

378

baudrate 4800

no_of _bits 8

one_bit_delay (1000000 / baudrate)
half_bit_delay (one_bit_delay / 2)

SW_UART_init();
SW_UART_transmit(
SW_UART_receive(

SW_UART.c

"SW_UART.h"

SW_UART_init()
SW_UART_TXD_DIR_OUT();
SW_UART_RXD_DIR_IN();

SW_UART_TXD_OUT_HIGH();
delay ms(19);

SW_UART_transmit(
bits = 0;

SW_UART_TXD_OUT_LOW();
delay _us(one_bit_delay);

(bits = 9; bits < no_of_bits; bits++)

((value >> bits) & ox01)
{

}

SW_UART_TXD_OUT_HIGH();

{
}

SW_UART_TXD_OUT_LOW();
delay _us(one_bit_delay);
}s

SW_UART_TXD_OUT_HIGH();
delay _us(one_bit_delay);

SW_UART_receive(

bits = 0;
value = 0;

(SW_UART_RXD_INPUT());

delay us(one_bit_delay);
delay us(half bit delay);

(bits = 9; bits < no_of_bits; bits++)

(SW_UART_RXD_INPUT())
{

}

value += (1 << bits);

delay us(one bit delay);
}s

(SW_UART_RXD_INPUT())

{
delay us(half bit delay);

value;

delay_us(half_bit_delay);

9;

<msp430.h>
"delay.h"
"SW_I2C.h"
"PCF8574.h"
"lcd.h"
"SW_UART.h"

GPIO _graceInit()

BCSplus_graceInit()
System_graceInit()
WDTplus_graceInit()

main(

rx_value = 0x00;
tx_value 0x20;

WDTCTL = WDTPW | WDTHOLD;

GPIO_gracelInit();

BCSplus_graceInit();

System_graceInit();

WDTplus_gracelInit();

LCD_init();
LCD_clear_home();

LCD_goto(0, 0);
LCD_putstr("TXD:");
LCD_goto(0, 1);
LCD_putstr("RXD:");

SW_UART_init();

(1)

rx_value = SW_UART_receive();
LCD_goto (15, ©0);
LCD_putchar(rx_value);
tx_value++;

LCD_goto(15, 1);
LCD_putchar(tx_value);
SW_UART_transmit(tx_value);
delay_ms(200);

GPIO_graceInit(

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS 0;
(CALBC1_8MHZ != 0xFF) {

__delay_cycles(100000);

DCOCTL = ©x00;
BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA_G;

BCSCTL3 = XT2S_@ | LFXT1S_© | XCAP_1;

System_graceInit(

__bis_SR_register(GIE);

WDTplus_gracelInit(

WDTCTL = WDTPW | WDTHOLD;

Simulation

RXD

=D

RTS [—

CTS p—

U2

P2.0
F21
P22

|n |°a

&

=

bt

P25

XOUTIP27
TESTISBWTCK

22k

P1.0TAOCLKIACLKIADICAD : 3

P11TADDIATICAT

P1.2TAD. 11AZICAZ [
P23 P13ADCA0CLKICAOUT/ANREF-VEREF-ICA3
F24 P14TAD2ISMOLK/ASVREF+VEREFHCASTCK
] P1.5TAD. OISCLIJASICASITMS
KINP2.ETADA F1.8TAD. 1/SDCISCLIABICABITDITELK
P1.7/SDISDAATIGATITDOTDI

RET/INMUSEWTDIO

MEP430G2452

Virtual Terminal

Explanation

=R

I e

LCD1
LMO18L
i
TwDO
1]
ExD:
[=]
. 884 92, ss8g2885
R1| | R2
LALIL] LILEL]
10k | | 1ok anl +|slo| ~ | of]
- U3
148 oo po =2
158 T3
soa P1le
F2 [:]
- A=LE e F3 [0 Back Light
] 1. il =10
A0 F5
O 2=] A e
[] 3n a2 F7 u12
10k
PCFa5T4
] o o
LALEL]
DSW1
DIFSW_3

Software UART is created with digital I/Os. Thus, the very first task we need to do is to initialize these
pins. The SW_UART header file states which pins and ports are used. So, you only need to set these
first. All of my codes are modular and so once you set these properly the functions and the definitions
associated take care of other tasks. This, in turn, makes the codes easily to use and ready for quick

modifications/deployments.

SW_UART_RXD_DIR
SW_UART_TXD_DIR
SW_UART_RXD_OUT
SW_UART_TXD_OUT
SW_UART_RXD_IN

SW_UART_RXD_IN_RES

SW_UART_RXD_PIN
SW_UART_TXD_PIN

Once the pins are set as per requirement, it is needed to initialize them for software UART

functionality.

SW_UART_init()

SW_UART_TXD_DIR_OUT();

SW_UART_RXD_DIR_IN();
SW_UART_TXD_OUT_HIGH();
delay ms(19);

384

The header file also states the communication baud rate and number of bits:

baudrate 4800
no_of _bits 8

one_bit_delay (1000000 / baudrate)
half_bit_delay (one_bit_delay / 2)

Based on the baud rate further timing infos are calculated. Software UART is not as reliable as
hardware UART and so it is better to use low baud rates. It is even better if it can be skipped. However,
when there is no other option or when there is a need for additional UART, it must be used.

The UART transmit and receive functions are written using polling methods. External digital I/O
interrupt can be used for receiving data. These functions are created just by studying the signal
patterns and using the same tactics as with other software communication libraries. The trick is to

emulate/receive the signals as a real hardware would do.

SW_UART_transmit(
bits = 0;

SW_UART_TXD_OUT_LOW();
delay_us(one_bit_delay);

(bits = 9; bits < no_of_bits; bits++)

((value >> bits) & ox01)
{

}

SW_UART_TXD_OUT_HIGH();

{
}

SW_UART_TXD_OUT_LOW();

delay_us(one_bit_delay);
s

SW_UART_TXD_OUT_HIGH();
delay_us(one_bit_delay);

SW_UART_receive(

bits = 0;
value = 0;

(SW_UART_RXD_INPUT());
delay us(one_bit_delay);
delay us(half_bit_delay);

(bits = 9; bits < no_of_bits; bits++)

(SW_UART_RXD_INPUT())
{

}

value += (1 << bits);

385

delay us(one bit delay);
}s
(SW_UART_RXD_INPUT())
{
delay us(half bit delay);

value;

delay _us(half_bit_delay);

9;

386

Demo

Scripts
&v'E' 2 B Ao (M Do

R

"‘J..‘l' TYETTINTTITTONY Vi

i R EN I DAEEE S ET
[Mper, ™

Demo video: https://youtu.be/AZIA7 Ydxww.

387

https://youtu.be/AZlA7_Ydxww

Capacitive Touch Overview

Capacitive touch sensing technology is nothing new at present. Cell phones, smartwatches, tablets,
portable music players, and even many home appliances that you can name no longer have
mechanical touch keys/switches/buttons/variables. All such switching elements have been replaced
by more smart and elegant capacitive touch sensors. At present due to this trend even the tiniest new
generation microcontroller has capacitive touch sensing capability. When it comes to Tl micros, this
trend seems to explode to a whole new level.

| haven’t seen so far, any TI MCU without capacitive touch feature. Almost all digital I/Os can be used
for capacitive touch as there is no specific dedicated I/Os for such implementations. This makes
capacitive touch sensing easy in terms of hardware design. Designing capacitive touch sensors is
another story.

Timerl A3 6{3 \
TALCLK —\

Scan Interval DVsS H @

7 Timer0 A3 i @ < .« —— Sensor Element
TAE]CLK< :
PinOsc \ Px.x GPIO S

~

Capture Input

\ TAOCCIOA /

[

ACLK

| Basic Clock I

In MSP430s, capacitive touch sensing requires two separate timers. These timers create independent
time bases and these time bases are compared against each other. One of these time bases is fixed
while the other is dependent of the value of touch sensor’s capacitance. When a touch is detected,
capacitance changes. This creates a significant difference between the time bases which otherwise
remains fairly constant. This is how a touch is detected. This is also a mean to measure capacitance
other than touch sensing.

For making all these tasks simple and for rapid development, Tl has provided a dedicated Hardware
Abstraction Layer (HAL) library for capacitive touch sensing. Use TI's Resource Explorer to download
code examples and library files. Programmer’s Guide SLAA490D discusses implementation of
capacitive touch sensing in terms of coding, hardware combinations and others. This page is also an
equally important one. Apart from these, there are good literatures from Tl that discuss tons of
valuable info about capacitive touch sensing technology — from hardware designs to implementation
methods.

388

http://www.ti.com/general/docs/litabsmultiplefilelist.tsp?literatureNumber=slaa490d
http://processors.wiki.ti.com/index.php/MSP430_Low_Cost_PinOsc_Capacitive_Touch_Overview

Tl discusses about three methods with which capacitive touch sensing can be achieved. These
methods are as follows:

e Relaxation Oscillator (RO)
This method counts the number of relaxation oscillator cycles within a fixed period called gate
time. Usually for the Value-Line Devices (VLD), the PinOsc feature is used in this method and
the key thing to note here is the fact that no external components like external resistors or
capacitors are needed to implement capacitive touch sensors. It is this method that we will be
observing in this article as our target devices are VLDs.

e Resistor Capacitor (RC)
This method is just the opposite of RO method. In this method, the gate time is variable as it
is the representation of capacitance while the oscillator time period is fixed. The fixed time
base is connected to an internal MSP430 oscillator like the DCO. The variable time base is
connected to a capacitor and resistor network. The time it takes to charge and discharge the
capacitor through the resistor is now the gate time. The RC method can be realized with any
MSP430.

e Fast Relaxation Oscillator (fRO)
This method is similar to the RC method except that the variable gate period is created with a
relaxation oscillator instead of the charge and discharge time.

TI's capacitive touch library documentation also recommends which hardware combination to use for
a given family of MSP430 microcontroller. Though these are not mandatory, following these
recommended combinations reduces code development time and best performances.

Devices HALs

G2xx2 RO_PINOSC_TAO0_WDTp
RO_PINOSC_TAO0_WDTp

G2xx3 — — —
fRO_PINOSC_TAO_TA1
RO_PINOSC_TA1_WDTp

G2xx5

fRO_PINOSC_TA1_TBO
F51xx RO_COMPB_TAO_WDTA
RO_COMPB_TA1_WDTA

F52xx
fRO_COMPB_TA1_TAO
FRAxx fRO_CSIO_TAO_TAT1
RO_CSIO_TAO_RTC
RO _COMPB_TA1 WDTA
F55xx = = =

fRO_COMPB_TA1_TAO
RO_CSIO_TA2_WDTA
fRO_CSIO_TA2_TA3

FR58xx and FR59xx

| don’t have TI's Capacitive Touch Boosterpack and so | had to make the capacitive touch sensors on
my own. | wish | had such a boosterpack because the rudimentary way with which | made the
capacitive sensors quickly is certainly not the best way to follow. | used just bare PCBs, jumper cables
and transparent scotch tape. | highly recommend not to use this technique for professional works.

389

http://processors.wiki.ti.com/index.php/MSP430_Low_Cost_PinOsc_Capacitive_Touch_Overview

Single-Channel Capacitive Touch

This is the very first capacitive touch example we will look at. Although a single capacitive touch button
has very little use in real life, it is good for realizing the mechanism behind this capaicitive touch
technology. If this example is well understood then everything related to capacitive touch sensing will
be realized without any confusion or doubt.

elementd

f/f-mwxﬁ Single Element
N

button

Multiple Elements

elementl element2 element3 elementd

slider

Code Example

structure.h (top part only)

CTS_STRUCTURE_H_
CTS_STRUCTURE_H_

"msp430.h"
<stdint.h>

middle_element;

one_button;

390

TOTAL_NUMBER_OF_ELEMENTS 1

RAM_FOR_FLASH

MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR

RO_PINOSC_TA®_WDTp

structure.c

"structure.h"

middle_element =

.inputPxselRegister = (*)&P2SEL,
.inputPxsel2Register = (*)&P2SEL2,

.inputBits = BIT4,

.maxResponse = (450 + 655),
.threshold = 450

one_button =

.halDefinition =
.numElements = 1,
.baseOffset = 0,

RO_PINOSC_TA@_WDTp,

.arrayPtr[0] = &middle_element,

.measGateSource= GATE_WDT_ACLK,
.accumulationCycles= WDTp_GATE_64

<msp430.h>
"CTS_Layer.h"
"CTS_HAL.h"
"structure.h"

DELAY 4000

GPIO_graceInit()
BCSplus_graceInit()3
sleep(time);

vector = TIMERO_AO_VECTOR
ISR_Timere_Ao(

TAOCTL &= ~MC_1;
TAGCCTLO &= ~(CCIE);
__bic_SR_register_on_exit(LPM3_bits + GIE);

vector = PORT2_VECTOR,
PORT1_VECTOR,
TIMERO_A1_VECTOR,
USI_VECTOR,
NMI_VECTOR,COMPARATORA_VECTOR,
ADC10_VECTOR
ISR_trap()

WDTCTL = ©;

main()
WDTCTL = WDTPW + WDTHOLD;

GPIO_gracelnit();
BCSplus_graceInit();

TI_CAPT_Init_Baseline(&one_button);
TI_CAPT_Update_Baseline(&one_button, 6);

(1)
(TI_CAPT_Button(&one_button))

P1OUT ~= BITO;
P10UT |= BIT6;

P10UT &= ~BIT6;
}

sleep(DELAY);

GPIO_graceInit(

9;

&= ~(BIT6 | BIT7);

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_3;
(CALBC1_12MHZ != @xFF) {

__delay_cycles(100000);

DCOCTL = 0x00;
BCSCTL1 = CALBC1_12MHZ;
DCOCTL = CALDCO_12MHZ;

BCSCTL1 |= XT20FF | DIVA_0;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

sleep(time)

TAOCCRO = time;

TAGCTL = TASSEL_1 | ID @ | MC_1 | TACLR;
TAOCCTLO &= ~CCIFG;

TAQCCTLO |= CCIE;
__bis_SR_register(LPM3_bits+GIE);
__no_operation();

Simulation

Capacitive touch sensing cannot be simulated in software like Proteus VSM.

=
i a
® L
) =
o oy
4 4 U1
LED_GREEN O—‘.z,,: F1.OTAOCLKIACLIIANICAD F2.0 :g
=57 Pr1macoiacAl F2.1 ==
—5=9 P1-2mA0.11A2ICAZ P22 3
BUTTON {O———35 F1.3/ADC10CLKICAOUTIASVREF-VEREF-/CAZ F2.3 [—=
R2 =] F1-4TA0 2ISMCLIIAGIVREF+VEREF HICALTCHK P2.4 [—=£——{) Cap Sansor
220R <77 F15TA0.0ISCLKIASICASTMS P25 =
<TEXT= LED_RED O P1.8/TAD. 1/SDOISCLIABICABTDITCLKXINP2 BTAD.1 (===
16a] ELT/SDUSDAIATICATITDO/DI XOUTIP2T (===
n RET {O——— RET/NMUSEWTDIO TEST/SEWTCK
D1 D2 MSFP420G2452
ATEXT=

LED-GREEN LED-RED
<TEXT> m <TEXT=

Explanation

In Grace, there is no option to generate configuration for capacitive touch. However, MSP430Ware
demos some examples for such. It is better to use the examples given there for project start up. | did
the same. However, for a beginner it is must to which things to modify and why do so. Implenting
capacitive touch requires three pairs of TI’s HAL library files. These are as follows and are needed to
be integrated with your project:

a 6‘.‘,’ Capacitive_Touch_(Single)
I s, Binaries

@l Includes

- s Debug

4 g Libraries

CTS Layer.h
ﬂ structure.c
structure.h

[b
¢ T main.c

Of these files, the important files that are needed to be edited to set capacitive touch properties of
capacitive touch sensor(s) are the structure header and source files. The rest two pairs of files should
be left untouched.

In the structure header file, external constant structure named middle_element defines I/O port(s)
properties of capacitive sensor(s). Similarly, one_button defines timer/watchdog properties. These

395

two external structures have other functions too. We will see these properties when will discuss the
source file. Next, we have to define how many capacitive touch sensors are there in our design. Finally,
we have to set which hardware combination to use. In our case, Timer0_A, watchdog timer and digital
I/0’s PinOsc functionality are used to implement capacitive touch. The rest of the file is not needed to

be changed anywhere.

middle_element;

one_button;

TOTAL_NUMBER_OF_ELEMENTS 1

RAM_FOR_FLASH

MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR

RO_PINOSC_TA® WDTp
Now it is time to explain the structure source file.

middle_element =

*)&P2SEL,
*)&P2SEL2,

.inputPxselRegister
.inputPxsel2Register
.inputBits = BIT4,

(450 + 655),
450

.maxResponse =
.threshold =

1

PxSEL and PxSEL2 bits internally set PinOsc feature. Since this example demonstrated one capacitive
touch button only one element is connected to BIT4 of port P2. Optionally, we can set the threshold

limit on which we can positively identify a touch.

396

.halDefinition =
.numElements = 1,
.baseOffset = 0,

RO_PINOSC_TA@_WDTp,

.arrayPtr[0] = &middle_element,

.measGateSource= GATE_WDT_ACLK,
.accumulationCycles= WDTp_GATE_64

The second part of the source file details which method is used along with the name and number of
element(s) to sense. Basically, here we have nothing to do other than to let this part know the
structure name of our element(s) and the number of sensors.

vector = TIMER® A® VECTOR
ISR_Timero_Ao(

TAOCTL &= ~MC_1;

TAOCCTLO &= ~(CCIE);

__bic_SR_register_on_exit(LPM3_bits + GIE);
}

vector = PORT2_VECTOR,
PORT1_VECTOR,
TIMERO_A1_VECTOR,
USI_VECTOR,
NMI_VECTOR,COMPARATORA_VECTOR,
ADC10 VECTOR
ISR_trap()

WDTCTL

Two interrupts are needed to be called. The first is the Timer0_A ISR. This acts like a wakeup alarm.
Once the capacitive sensing and other tasks in the main loop are completed, this timer is started and
low power mode is entered. After timeout, this timer interrupts causing the main tasks to reoccur and
leave low power mode momentarily. The second is a Trap ISR. Trap ISR ensures that if for some reason
something happens that you didn’t expect it will reset the MCU. The interrupt vectors assigned here
are those vectors which we won’t be using. If any of these pop-up, a reset will occur.

main()
WDTCTL = WDTPW + WDTHOLD;

GPIO_graceInit();
BCSplus_graceInit();

TI_CAPT_Init_Baseline(&one_button);
TI_CAPT_Update_Baseline(&one_button, 6);

(1)

(TI_CAPT_Button(&one button))

397

P10UT ~= BITO;
P10UT |= BIT6;

P10UT &= ~BIT6;

sleep(DELAY);

The main function is perhaps the smallest one here. Except for the other parts with which by now we
are familiar, there are a few new lines of code. Just before the main loop, the two lines of code right
above it, initialize the capacitive touch sensor. Number 6 in the function TI_CAPT_Update_Baseline
states the number of samples to capture for accurately sensing a touch. If a valid touch is detected,
the LEDs of Launchpad board are toggled.

Demo

ﬂﬁ;_r'h)
e '~1|I Al
e e 4 ﬂlh Jﬁ 't
b .EEE& ij il ﬂg

ey

Demo video: https://youtu.be/sh8nkol2XKw.

398

https://youtu.be/sh8nkoI2XKw

Multi-Channel Capacitive Touch

Unlike single capacitive touch buttons, multiple capacitive sensors have several potential uses. These
include multi-touch buttons, sliders, wheels, rotary encoders, etc. Here we will have a look at multiple
capacitive touch buttons and the example demonstrated here is basically the extension of the last
one. However, for multi-touch capacitive touch sensors, there are twists in the software end apart
from hardware design and considerations.

‘ Energia Capacitive Touch BoosterPack

Pin number

BoosterPack BoosterPack J2
GE N 20

19

18

17

16

15

14

13 |

12 [TOUCH

1

@T& 5
INSTRUMENTS

E58T] Rei vilo, 2012-2015
embeddedcomputing. weebly.com
version 1.0 2013-12-23

Code Example

structure.h (top part only)

CTS_STRUCTURE_H_
CTS_STRUCTURE_H_

"msp430.h"
<stdint.h>

middle_element;
up_element;
down_element;

multi buttons;

399

TOTAL_NUMBER_OF_ELEMENTS 3

RAM_FOR_FLASH

MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR 3

RO_PINOSC_TA@_WDTp

structure.c

"structure.h"

middle_element
.inputPxselRegister = *)&P2SEL,

.inputPxsel2Register *)&P2SEL2,
.inputBits = BITS5,

.maxResponse = (100 + 655),
.threshold = 100

up_element =
.inputPxselRegister = (*)&P2SEL,

.inputPxsel2Register = *)&P2SEL2,
.inputBits = BIT4,

.maxResponse = (100 + 655),
.threshold = 100

down_element

.inputPxselRegister *)&P2SEL,
.inputPxsel2Register *)&P2SEL2,

.inputBits = BIT3,

.maxResponse = (100 + 655),
.threshold = 100

};

multi_buttons =

.halDefinition = RO_PINOSC_TA® WDTp,
.numElements = 3,
.baseOffset = 0,

.arrayPtr[0o] &up_element,
.arrayPtr[1] &down_element,
.arrayPtr[2] &middle_element,

.measGateSource= GATE_WDT_ACLK,
.accumulationCycles= WDTp_GATE_64

<msp430.h>
"CTS_Layer.h"
"CTS_HAL.h"
"structure.h"

DELAY 4000

* keyPressed;

GPIO_graceInit()
BCSplus_graceInit()
sleep(time);

vector = TIMERO_AO_VECTOR
ISR_Timere_Ao(
{
TAOCTL &= ~MC_1;
TAOCCTLO &= ~(CCIE);
__bic_SR_register_on_exit(LPM3_bits + GIE);
}

vector = PORT2_VECTOR,
PORT1_VECTOR,
TIMER®_A1l_VECTOR,
USI_VECTOR,

NMI_VECTOR,COMPARATORA_VECTOR,
ADC10_VECTOR
ISR_trap()

WDTCTL = 0

main()
WDTCTL = WDTPW + WDTHOLD;

GPIO_graceInit();
BCSplus_gracelInit();

TI_CAPT_Init_Baseline(&multi_buttons);
TI_CAPT_Update_Baseline(&multi_buttons, 25);

(1)
{
keyPressed = (*)TI_CAPT_Buttons(&multi_buttons);

(keyPressed)
{

(keyPressed == &up_element)
{

}

P1OUT |= BITO;

(keyPressed == &down_element)

{
}

P10OUT |= BIT6;

(keyPressed == &middle_element)
{

}

P1OUT = 0;

}

sleep(DELAY);
}

GPIO_graceInit(

BITO | BIT6;

9;

9;

9;

&= ~(BIT6 | BIT7);

9;

BCSplus_graceInit(

BCSCTL2 = SELM @ | DIVM @ | DIVS_0;

(CALBC1_8MHZ != OxFF)

__delay_cycles(100000);

DCOCTL = 0x00;

BCSCTL1 = CALBC1_8MHZ;
DCOCTL = CALDCO_8MHZ;

BCSCTL1 |= XT20FF | DIVA o;

BCSCTL3 = XT2S_@ | LFXT1S_2 | XCAP_1;

sleep(time)

TAGCCRO = time;

TAGCTL = TASSEL_1 | ID_© | MC_1 | TACLR;
TAGCCTLO &= ~CCIFG;

TAOCCTLO |= CCIE;
__bis_SR_register(LPM3_bits + GIE);
__ho_operation();

Simulation

Capacitive touch sensing cannot be simulated in software like Proteus VSM.

f
(=]
5| E|
= =)
= = U1
LED_GREEN 0—‘?3: P1.OMAOCLKIACLIIAQICAD P20 ==
=] Pi-1mACOIRTIGAT M
2o P1-2TA0.1A2ICA2 P22 ——
BUTTON {O——, P1-3/ADC10CLKICAOUTIASREF-VEREF-ICA3P2.3 {0 Cap Sensor Down
—5| P1-47TAQ.2ISMCLKIAUVREF+VEREF +ICA4TCKPZ.4 {0 Cap Sensor Up
Tin] P1-5TAQOSCLKIASICASITMS P2.5 {0 Cap Sensor Middle
LED_RED O—— 75 P1.6/TAC.1/SDOISCLIABICASTDITCLIKINIP2 BTA.1 ==
557 BI7/SDUSDAATICATITDOMDI XOUTIP2T [-==
RST {O————{ RETINMUSEWTDIO TEST/SEWTCK [——
MSP420G2452

404

Explanation

This example uses the same ideas as in the previous example. The header file is slightly modified.
Three sensor elements are used and so the number of sensor is set 3. The elements are named
differently since each are independent of the other.

middle_element;
up_element;
down_element;

multi_buttons;

TOTAL_NUMBER_OF_ELEMENTS 3

MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR 3

The main difference is present in the structure source file. The three different elements are declared
independently despite being in the same port. This is so because we need to identify them when a
touch is detected.

middle_element =
.inputPxselRegister *)&P2SEL,

.inputPxsel2Register *)&P2SEL2,
.inputBits = BITS,

.maxResponse = (100 + 655),
.threshold = 100

up_element =

.inputPxselRegister *)&P2SEL,
.inputPxsel2Register = (*)&P2SEL2,
.inputBits = BIT4,

.maxResponse = (100 + 655),
.threshold = 100

405

down_element

.inputPxselRegister *)&P2SEL,
.inputPxsel2Register = *)&P2SEL2,
.inputBits = BIT3,

.maxResponse = (100 + 655),
.threshold = 100

multi_buttons =

.halDefinition =
.numElements = 3,
.baseOffset = 0,

RO_PINOSC_TA@_WDTp,

.arrayPtr[0o] &up_element,
.arrayPtr[1] &down_element,
.arrayPtr[2] &middle_element,

.measGateSource= GATE_WDT_ACLK,
.accumulationCycles= WDTp_GATE_64

Similarly, the sensor structure is also modified for these three elements.

The main code is almost identical to the single sensor demo. However, the variable keyPressed is used
to check which element was touched. According to touch on different element states of Launchpad
board LEDs are altered.

keyPressed = (*)TI_CAPT_Buttons(&multi_buttons);

(keyPressed)
{

(keyPressed == &up_element)
{

}

P10UT |= BITO;

(keyPressed == &down_element)

{
}

P10UT |= BIT6;

(keyPressed == &middle_element)
{

}

P10UT

Demo

Demo video: https://youtu.be/uCgil1GNajl.

407

https://youtu.be/uCgi11GNajI

A Brief Intro of MSP430F5529LP Launchpad and TI’s Driver Library

Up till now we have seen and used the power of Grace configuration tool, MSP430G2xxx devices and
only mentioned the name Driver Library. At present for micros with too many hardware resources, it
is really very difficult to go through their individual datasheet line-by-line and memorize register
names and their purposes. However, we just need peripheral initialization once in a code and it should
not take much of a project’s development time. Likewise, when moving from one micro sub family to
another or just interchanging devices within a given family, there should be some similarity in coding
and hardware or else it be really very much difficult to keep track of everything. To overcome such
issues and many others, mainstream embedded system solution manufacturers like Tl offer different
code development solutions ranging from graphical tools like Grace to code examples/templates as in
TI’'s Resource Explorer. The Peripheral Driver Library or simply DriverLib is one solution that somewhat
resides between aforementioned two. It is a set of drivers for accessing the peripherals found on
MSP430 micros and is similar to HAL libraries used for ARM micros. So far, we have not used this
library pack as it doesn’t support VLDs. Details of TI’s driver library can be found here. Please have it
downloaded as we will need it for the demo.

As mentioned before, there are other more resourceful and powerful MSP430s and the driver library
is intended for such robust devices. MSP430F5529LP is one such powerful device. It is a
microcontroller mainly intended for USB application development and has 128kB of flash and 8kB
RAM. There is an inexpensive Launchpad board dedicated for this awesome micro and it delivers the
punch needed in complex big projects. Details of this Launchpad board can be found here.

@ d16Z5540EHdX3-dSH g 3 X
-

e -
[3
FTASY o @

" "181 HEs| % ’
e TrEErE:
- bl

P i

%
[
a a

R

ng 2 oA
. w1y Bl

bl ™ o>
IE':!',”- =l‘1§
@ TEd ! LR 8]
X 21 " Rl L i thire—
: “I. ':.‘“ I] . a. 2 “"illnﬁi{ﬂutji

AR EE b EIRa B R bE]

”mllmullmm
C!.iz

T
'5l p=l ‘g

s lflx O™ "~
By |z C euem
i g

”L

In this section, we will briefly see the potential of combining TI’s Driver Library with MSP430F5529LP.

[+ 1]
]
L]

408

http://www.ti.com/tool/MSPDRIVERLIB
http://www.ti.com/tool/MSP-EXP430F5529LP

How tos?

Google and download the Energia pinmap for MSP430F5529LP.

ﬁ Energia LaunchPad with MSP430F5529
Flash 128 KB I Hardware
SRAM 8 KB ¢ Pin number
Other Pins
[ac | 12 bits | re
Default I°C = (1) | s
digitalRead(and digitalWrite(

digitalRead(, digitalWrite()
and analogWriteq)

Ja | gz
40 | 20

P25
P24 |39 |19 | P20
Pis | 38| 15 [P

|

P14 |37 |17 L P4
P13 |36 16
P12 |35 15 BPa 0 ELIYVN Mos (0)
§) : : SCK (1) P4 aY 32 | 14 Dpa BNl miso (o)
Cs(0) J 3 cs(1) PPa0 33 [13 P26
SCL (1) 9 | ’ & & * 2. Pa7 32 12 P23
MOS| (1) LI) & 4 (N, Y) paz | 31 | 11 Dpay

SRDXSNT P45 P10 jumper [0S0
jumper P44 GND P11 | Push2 |
P2 1
P47

[EZEZ) Reivilo, 2012-2015
embeddedcomputing.weebly.com jumper
version 2.1 20150915 jumper

| assume that by now you have downloaded the latest version of DriverLib and other documentations
regarding this and the MSP430F5529LP Launchpad board.

Extract the DriverLib zip file and copy the correct DriverLib folder (MSP430F5xx_6xx folder in our case)
to your project folder. In my case, | copied this folder and renamed it as driverlib. The process is same
as what we did for our own-built library files.

4 #* Driver_Library Test [Active - Debug]
b 3 Binaries

@l Includes
[.
[:.
I
I

b
b

Let the compiler know the physical paths of this folder just like the custom library files. Rest of the
works is same as before.

409

Code Example

"driverlib.h"
"delay.h"

main()
S = 0x00;
WDT_A_hold(WDT_A_BASE);

GPIO_setAsOutputPin (GPIO PORT_P1, GPIO PINO);
GPIO_setDriveStrength(GPIO _PORT_P1, GPIO PINGO,
GPIO_FULL_OUTPUT_DRIVE_STRENGTH);
GPIO_setAsOutputPin (GPIO_PORT P4, GPIO PIN7);
GPIO_setDriveStrength(GPIO_PORT P4, GPIO_PIN7,
GPIO FULL_OUTPUT DRIVE_STRENGTH);
GPIO_setAsInputPinWithPullUpResistor (GPIO_PORT_P2, GPIO_PIN1);

GPIO_setAsPeripheralModuleFunctionInputPin(GPIO PORT_P5, (GPIO PIN2 |
GPIO_PIN4));

GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P5, (GPIO PIN2 |
GPIO_PIN4));

UCS_setExternalClockSource(32768, 4000000);

UCS_turnOnXT2(UCS_XT2_DRIVE_4MHZ_8MHZ);

UCS_turnOnLFXT1(UCS_XT1_DRIVE_©, UCS_XCAP_3);

UCS_initClockSignal (UCS_MCLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_1);

UCS_initClockSignal(UCS_SMCLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_1);

UCS_initClockSignal(UCS_ACLK, UCS_XT1CLK_SELECT, UCS_CLOCK_DIVIDER_1);

(1)

(GPIO_getInputPinValue(GPIO_PORT_P2, GPIO PIN1) == false)
{

(GPIO_getInputPinValue(GPIO_PORT_PZ, GPIO_PINl) == false);
GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN®);
delay_ms(100);

GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO PIN®);
S = ~S;

}

P4OUT "= BIT7;
(s)

0:

{

delay ms(100);

)

delay ms(600);

J

Explanation

To keep things simple, | demoed another LED blinking code. Notice that with inclusion of driverlib,
everything has changed with meaningful functions. Take the setting of watchdog timer as an example.

WDTCTL = WDTPW | WDTHOLD; //Register-level access

WDT_A_hold(WDT_A_BASE); //DriverlLib function call

Instead of setting registers, driverlib functions are just taking some function argument(s) to set desired
pin according to our wish. The functions and the arguments have meaningful names instead of magical
numbers. This way of coding gives a fast overview of our code and the development time and efforts
are greatly reduced. All register-level tasks are done under the hood of driverlib. This doesn’t however
restrict us from going the old-fashioned way of using register-based coding. Still it is possible:

P40UT ~= BIT7;

The code begins with GPIO settings as follows:

GPIO_setAsOutputPin (GPIO_PORT_P1, GPIO_PIN®);
GPIO_setDriveStrength(GPIO_PORT P1, GPIO _PIN@, GPIO_FULL_OUTPUT_DRIVE_STRENGTH);
GPIO_setAsOutputPin (GPIO_PORT_P4, GPIO_PIN7);
GPIO_setDriveStrength(GPIO_PORT P4, GPIO _PIN7, GPIO_FULL_OUTPUT_DRIVE_STRENGTH);

GPIO_setAsInputPinWithPullUpResistor(GPIO _PORT P2, GPIO PIN1);
GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P5, (GPIO_PIN2 | GPIO _PIN4));

GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P5, (GPIO PIN2 |
GPIO PIN4));

Two pins P1_0 and P4_7 are set as outputs with full drive strength since these pins have LEDs
connected with them. P2_1 is set as an input with pull-up as it is connected with an onboard push
button. Some pins of P5 are set for peripheral modules because these pins are connected with external
crystals.

Next, we set to configure the clock system. There are two onboard external crystals — one 32.768kHz
clock crystal and one 4MHz crystal. UCS stands for Unified Clock System. Like the basic clock system
in MSP430G2xxx devices, this a complex network of clock system with lot of options. There are several
internal and external clock sources to clock the main clock, the sub-main clock and the auxiliary clock
signals. Here, | used the external crystal clocks to clock MCLK, SMCLK and ACLK

UCS_setExternalClockSource(32768, 4000000);

UCS_turnOnXT2(UCS_XT2_DRIVE_4MHZ_8MHZ);
UCS_turnOnLFXT1(UCS_XT1_DRIVE_©, UCS_XCAP_3);

UCS_initClockSignal(UCS_MCLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_1);
UCS_initClockSignal(UCS_SMCLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_1);
UCS_initClockSignal(UCS ACLK, UCS XT1CLK SELECT, UCS_CLOCK DIVIDER 1);

411

In the main loop, the Launchpad’s green LED (P4_7) is toggled at a given flash rate. When the onboard
user push button (P2_1) is pressed, the onboard red LED (P1_0) is briefly turned on and the rate of
green LED’s flashing is altered.

(GPIO_getInputPinValue(GPIO_PORT_P2, GPIO PIN1) == false)

{
(GPIO_getInputPinValue(GPIO_PORT_P2, GPIO_PIN1) == false);
GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO PIN®);
delay ms(100);
GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO PIN®);
S = ~s;

}
P40OUT 7= BIT7;
(s)
Q:

delay ms(100);

)

delay ms(600);

J

Demo

. £XP430F552
; 1 ;:l.!ﬁ B

"
F R
w N

8

Lp \Z
i.'--i L

Demo video: https://youtu.be/ppgQP661JDw.

412

https://youtu.be/ppgQP661JDw

Ending

A microcontroller like the ones in MSP430G2xxx series may look tiny and less resourceful but it is
impossible to show everything in full details. This writeup is just a summary. Even at this stage after
explaining and demoing multiple basic hardware of MSP430s, | have yet to cover more stuffs.

As an advice, it is imperative that readers study app notes, reference manuals and Tl wiki pages to
improve proficiency and in-depth knowledge. There are some good books on MSP430s too. Books like
MSP430 Microcontroller Basics by John Davies and Analog and Digital Circuits for Electronic Control
System Applications Using the TI MSP430 Microcontroller by Jerry Luecke discuss MSP430
microcontrollers and their applications in really great details. For now, | ask readers to practice and
experiment what | have shown so far. Try stuffs without using GRACE assist, try out different
combinations and try out different MSP430 micros.

Happy coding.

Author: Shawon M. Shahryiar
https://www.facebook.com/qgroups/microarena
https://www.facebook.com/MicroArena 25.08.2017

** Some images have been taken from the documents and webpages of Texas Instruments (Tl) and Mikroelektronika.

413

https://www.facebook.com/groups/microarena/
https://www.facebook.com/MicroArena?ref=hl

	The MSP430 Family
	Launchpad Boards and BoosterPacks
	Hardware
	Software
	Documents, Pages and Forums
	Starting a New CCS Project
	GRACE
	UniFlash
	Strategies and Tactics
	Generating HEX Output Files
	Building New Libraries
	Adding Custom Library Files
	Using GRACE Simply but Effectively
	Optional Customizations
	Advanced Concepts

	Basic Clock System Plus (BCS+)
	Code Example
	Simulation
	Explanation
	Demo

	Digital I/Os (DIO)
	Code Example
	Simulation
	Explanation
	Demo

	External Interrupts (EXTI)
	Code Example
	Simulation
	Explanation
	Demo

	Alphanumeric LCD
	Code Example
	Simulation
	Explanation
	Demo

	Low Power Modes (LPM)
	Code Example
	Simulation
	Explanation
	Demo

	Internal Flash Memory
	Code Example
	Simulation
	Explanation
	Demo

	Timer Overview
	Timer A
	WDT+

	Free Running Timer
	Code Example
	Simulation
	Explanation
	Demo

	Timer Interrupt
	Code Example
	Simulation
	Explanation
	Demo

	Pulse Width Modulation (PWM)
	Code Example
	Simulation
	Explanation
	Demo

	Timer Input Capture
	Code Example
	Simulation
	Explanation
	Demo

	Time Delay Generation with Timer Compare-Match Feature
	Code Example
	Simulation
	Explanation
	Demo

	Watchdog Timer Plus (WDT+)
	Code Example
	Simulation
	Explanation
	Demo

	WDT+ as an Interval Timer
	Code Example
	Simulation
	Explanation
	Demo

	Analogue Frontend Overview
	Analogue-to-Digital Converters (ADC)
	Digital-to-Analogue Converters (DAC)
	Comparators (COMP)
	Op-Amps (OA)

	Comp_A+ Module
	Code Example
	Simulation
	Explanation
	Demo

	ADC10
	Code Example
	Simulation
	Explanation
	Demo

	ADC10 Interrupt
	Code Example
	Simulation
	Explanation
	Demo

	ADC10 with Direct Memory Access (DMA)
	Code Example
	Simulation
	Explanation
	Demo

	Sensing a Sequence of ADC10 Channels with DMA
	Code Example
	Simulation
	Explanation
	Demo

	Sensing Multiple Out-of-Sequence ADC10 Channels with DMA
	Code Example
	Simulation
	Explanation
	Demo

	Communication Overview
	USI vs USCI - Which one is better?
	Software-based Communication

	USI SPI – Interfacing MAX7219
	Code Example
	Simulation
	Explanation
	Demo

	USCI SPI – Interfacing MPL115A1 Atmospheric Pressure Sensor
	Code Example
	Simulation
	Explanation
	Demo

	USCI SPI – Interfacing SSD1306 OLED Display
	Code Example
	Simulation
	Explanation
	Demo

	Software SPI – Interfacing MCP4921
	Code Example
	Simulation
	Explanation
	Demo

	LCD using DIO Bit-Banging
	Code Example
	Simulation
	Explanation
	Demo

	USI I2C – Interfacing PCF8574 I/O Expander
	Code Example
	Simulation
	Explanation
	Demo

	USCI I2C – Interfacing BH1750 Ambient Light Sensor
	Code Example
	Simulation
	Explanation
	Demo

	USCI I2C – Interfacing DS1307 Real Time Clock (RTC)
	Code Example
	Simulation
	Explanation
	Demo

	Software I2C – Interfacing PCF8591 ADC-DAC
	Code Example
	Simulation
	Explanation
	Demo

	Two Wire LCD
	Code Example
	Simulation
	Explanation
	Demo

	One Wire (OW) – Interfacing DS18B20 Temperature Sensor
	Code Example
	Simulation
	Explanation
	Demo

	One Wire (OW) – Interfacing DHT22 Hygrometer Sensor
	Code Example
	Simulation
	Explanation
	Demo

	USCI - UART
	Code Example
	Simulation
	Explanation
	Demo

	Software UART
	Code Example
	Simulation
	Explanation
	Demo

	Capacitive Touch Overview
	Single-Channel Capacitive Touch
	Code Example
	Simulation
	Explanation
	Demo

	Multi-Channel Capacitive Touch
	Code Example
	Simulation
	Explanation
	Demo

	A Brief Intro of MSP430F5529LP Launchpad and TI’s Driver Library
	How tos?
	Code Example
	Explanation
	Demo

	Ending

