Indiictance_-Canacitance NMaeaaciiremaent ricincg

PIC12 NMirrorcantrallar

When designing or debugging an electrical or electronics device, it is very important to know the values
of the components that have been used on board. With a multimeter most of the components can be
easily measured and identified but most ordinary multimeters do not have options to measure inductors
and capacitors as this is rarely needed. However, without capacitors there are literally no circuits while
complex circuits may have inductors in them. A LCR (inductor-capacitor-resistor) measurement meter can
be used to determine the aforementioned components but usually such meters are pretty expensive.

Here, | will share a method with which we can measure inductors and capacitors with some degree of
accuracy. For the purpose, we can use a common 8-bit microcontroller. | have used a PIC18F452. Of
course, any other microcontroller will be equally suitable for the purpose as long as the calculations and
procedures are maintained. We will also need a small external analogue circuit based on LM393 dual
analogue comparator. This circuit is a simple Hatley oscillator. The idea is to measure the frequency or

time period of the oscillator. When a new component such an inductor introduced to the oscillator, its
frequency and therefore time period changes. We can then back-calculate component value.

PIC18F452 is an 8-bit PIC18F series microcontroller. In terms of hardware is much more capable than the
popular PIC16F877A or PIC16F887. However, we do not need any other hardware apart from a capture
compare module (CCP) and a timer. The main reason to use a PIC18F is its operating clock speed which is
40MHz.

https://en.wikipedia.org/wiki/Hartley_oscillator

Schematic

LCD1
LMO16L
U1
OSGH/CLKI RCOT10SOTICK] |—
MCLRAPP RC1T10SICCP2A Carp. nF:
- RC2ICCP1
2= ragiano RC3/SCKISCL L A, B
o Ratant RCA4/SDISDA B
£ RA/ANIVREF- RCS5/SDO («g;ﬂlu " .
2~{ RAJ/ANSIVREF+ RCBITXICK oW @92 grapmwen
S Ramooa - RG7IRXDT
Tan =19 —[rufen] ||| ~foo] @] o =t
RAG/OSC2ICLKO RDOIPSPO [=
e RD1/PSP1 |57
REOANTO RD2/PSP2
2 RBINTY RD3IPSP3 (=22 0000
22 RB2ANT2 RD4/PSP4 [EE——0) LCD_D4 gz= EEEE
LCD_EN OW RE3/CCPZE RDS/IPSPS ?0 LCD_D5 0-“|0- aaa'a
LCD_RW O—t-{ RB4 RDG/PSPE [=5——0) LCD_D§ g 95350
LCD_RS OW RB5/PGM RD7IPSPT ——) LCD_D7 —a-
%7o RBEPGC _ o
=2 RE7TIPGD REORD/ANS [—=—
RE1VVRIANG l_10
RE2/CS/ANT |2
PIC18F452 & ?
n - L |
R2 R6
100k 1k
L SWi1
|
L L1 c2 R4
LA _] —
100u [e o
B84432T1474K000 ———0 3
@ SW-ROT-6 SW2 10u -
-
n L5 SW-ROT-6 $.O—] ATk UZA
150u a
L4 |)) e
22u — C1)
. L2 100n 314 »
10u [] —) CCP
u L3 s 7 21
4Tu |4
" 22u | 100u ¢© CON C5 | C4 7
— 47 0n] 100 R3 LM393
- il
100k C3
[] 10u

Components

As shown in the circuit diagram all the components would be needed. Components L2 to L6 and C4 to C8
are test components. These are present only in simulation and not physically. Rotary switches SW1 and
SW2 are only use in simulation schematic and are physically not present. A 2x16 alphanumerical LCD is
used for displaying info. And a button connected to pin CO is used for mode selection.

#include <18F452.h>

#device *=16

#fuses NOWDT, PUT, H4, BROWNOUT, BORV42, NOLVP, NODEBUG, NOCPB, STVREN, CPD
#fuses PROTECT, NOWRT, NOWRTB, NOWRTC, NOWRTD, NOEBTR, NOEBTRB, NOOSCSEN

#use delay(clock =

#include "lcd.c"

input

100.0
100.0
3.142
1000

10.0/ (4.0 * pi * pi *
10.0/ (4.0 * pi * pi *

int32 overflow_count = 0;
int32 pulse_ticks = 0;
intl6 start_time =0;
int16 end_time = 0;

setup(

#int_TIMER1

TMR_ISR(void)
{

overflow_count++;

}

#int_CCP1

CCP_ISR()
{
end_time = CCP_1;
pulse_ticks = ((65536 * overflow_count) + end_time - start_time);
start_time = end_time;
overflow_count = 0;

}

main()

calibration_done = 0;
mode = 0;
t=10;

ref =0.0;
value = 0.0;

setup();

while()

{
t = (pulse_ticks);
value = (()t * (

if(mode_button ==

{
delay_ms(60);
while(mode_button ==
calibration_done = 0;
mode++;

if(mode > 1)
{
mode = 0;
}
}

if(calibration_done == 0)

{
lcd_putc("\f");
lcd_gotoxy(1, 1);
lcd_putc("Calibrating....");
lcd_gotoxy(1, 2);
lcd_putc("Place no part.");
delay_ms(cal_delay);
lcd_putc("\f");

if(mode == 0)

{
ref = (value * scaling_factor_c);
lcd_gotoxy(1, 1);
lcd_putc("C.ref/nF:");
lcd_gotoxy(1, 2);
printf(lcd_putc, "%3.1g ", ref);

}

if(mode == 1)

{
ref = (value * scaling_factor_lI);
lcd_gotoxy(1, 1);
lcd_putc("L.ref/uH:");
lcd_gotoxy(1, 2);
printf(lcd_putc, "%3.1g ", ref);

delay_ms(cal_delay);
lcd_putc("\f");

calibration_done = 1;

}

else

{
lcd_gotoxy(1, 1);

switch(mode)

{

case 1:

{

value = (value * scaling_factor_c);
lcd_putc("Ind./uH:");

break;
}

default:

{

value = (value * scaling_factor_lI);
lcd_putc("Cap./nF:");

break;
}
}

value -= ref;

if((value <0) || (value > 1000))
{
value = 0;

}

lcd_gotoxy(1, 2);
printf(lcd_putc, "%3.1g " value);
}

delay_ms(100);
b

setup()

setup_wdt(WDT_OFF);
setup_adc(ADC_OFF);
setup_adc_ports(NO_ANALOGS);
setup_spi(SPI_DISABLED);
setup_psp(PSP_DISABLED);
setup_ccpl(CCP_CAPTURE_RE);
setup_ccp2(CCP_OFF);
setup_low_volt_detect(LVD_43);
setup_timer_O(TO_OFF | TO_8_BIT);
setup_timer_1(T1_INTERNAL);
setup_timer_2(T2_DISABLED, T2_DIV_BY_1, 16);

setup_timer_3(T3_DISABLED);
set_timer0(0);
set_timer1(0);
set_timer2(0);
set_timer3(0);

enable_interrupts(INT_CCP1);
enable_interrupts(INT_TIMER1);
enable_interrupts(global);
lcd_init();

lcd_putc("\f");

Theory

We know that:

1

fose = 5v1o)

For a known set of L and C the equation above becomes:

1
270V (Lges Cref)

fRef =

We also know that the inductance of inductors adds when connected in series:

1
270V ((Lges + L)C)

f oscnew —

Similarly, the total capacitance of capacitors sums up when connected in parallel:

1
27tV (L(Cres + €))

f osc new —

The above equation can be rearranged as follows:

1

C =
4'7T2LReffosc new

2 CRef

where
1

Cref = —5——
ker 4'n-ZLReffRefZ

We also know that:

Thus, the above equation for unknown capacitor becomes:

2
C Tosc new

= - C
4T Lpes Ref

or

_ (Tgsc new TRefZ)

Cc
4‘7T2LRef

The same is equation also holds true for unknown inductor too:

2
Tosc new

= AmCy, R
or

_ (th)sc new ~ TRefz)

L
47TZCRef

Thus, by knowing two different frequencies or time periods, the value of any unknown capacitor or
inductor can be determined.

A PIC18F452’s CCP1 module along with Timer 1 is used to capture the oscillations coming out of a Hartley
oscillator. With nothing unknown connected except the 100nF and 100uH reference capacitor and
inductor respectively, the reference oscillation frequency is about 50kHz (about 20us time period).
Whenever a new component is added this frequency changes.

Explanation

Basing on the theory discussed, we would need PIC18’s high processing speed along with a timer and
capture module. We would also need an LCD to display results. The setup function shown below highlights
these modules and their settings.

setup(

setup_ccp1(CCP_CAPTURE_RE);

setup_timer_1(T1_INTERNAL);
set_timer1(0);

enable_interrupts(INT_CCP1);
enable_interrupts(INT_TIMER1);
enable_interrupts(global);
lcd_init();

lcd_putc("\f");

CCP1 module is set for rising edge capture. This means that CCP1 will capture Timer 1’s count whenever
it senses rising edges. CCP modules in PIC microcontrollers usually work Timer 1 module and so its count
is captured. Capturing two consecutive rising edges result in period measurement of incoming waveform.
This is what we would need the most.

To further make thing work apparently in concurrent manner, interrupts are used. CCP1 interrupt is
triggered when there is a rising edge capture and Timer 1 interrupt is used to keep track of timer
overflows. The current and previous capture counts are stored while taking care of Timer 1 overflow.
These would be used to determine time period. Timer 1 will rarely overflow because it would only
overflow if the incoming waveform has very low frequency and this would literally never happen.

#int_TIMER1

TMR_ISR(void)
{

overflow_count++;

}

#int_CCP1

CCP_ISR(void)

{
end_time = CCP_1;
pulse_ticks = ((65536 * overflow_count) + end_time - start_time);
start_time = end_time;
overflow_count = 0;

}

PIC18's PLL is used to upscale an external 10 MHz crystal oscillator clock to 40 MHz. This is reflected in the
fuse bit and clock settings.

#fuses H4

#use delay(clock =

However, PICs usually take 4 clock cycles per instruction and so the effective system clock frequency is 10
MHz.

PLL Clock Frequency 40 MHz

= =10 MH
Clocks per Instruction 4 z

Sys Clk =

Thus, one tick of Timer 1 is:

1
SysClk 10 MHz

Time per Timer 1 Tick = =100ns=0.1ps

Thus, at the base frequency of 50 kHz (20 ps), Timer 1 would count:

20 us

=200
0.1ps

Timer 1 Count or Tger =

Since the reference inductor and capacitor values are know the following equations simply as:

_ (th)sc new TRefz)

C

4'7T2LRef
C = (th)sc new (200 x 0.1 U.S)z)
412 x 100 uH
2 2
C = (Toscnew —200) % 0.01 p.SZ

41 x 100 H

_ (th)sc new 2002)

Connr = — 2700 <10

The same applies for inductor measurement too and the formula simplifies as shown below:

L _ (T%sc new ~ 2002)
muH ™ 402 X 100

x 10

The fixed constants are defined in definitions on top of the code:

#define C_cal_in_nF 100.0
#define L_cal_in_uH 100.0
#define pi 3.142
#define cal_delay 1000

#define scaling_factor_c ((10.0/ (4.0 * pi * pi * L_cal_in_uH)))
#define scaling_factor_| ((10.0/ (4.0 * pi * pi * C_cal_in_nF)))

Now let’s say we want to measure 220nF. So, for this amount of capacitance, the oscillator frequency
would be:

1
= = 28134.885 Hz
27V (100 pH(100 nF + 220 nF))

fOSC new

i.e.
Toscnew = 35.5us
Timer 1 would count 355 counts while capturing this frequency from the oscillator.

Now if we back-calculate using the formulae shown previously, the capacitor is found to be:

o (3552 —200?%)
T 4m2 x 100

x 10 =217.9nF

Yes, the reading is a bit off from actual value but close enough to actual value. The error occurs because
timer counts cannot be anything other than integers. This error can be smartly compensated in code.

The push button connected to pin CO is used to select either inductance or capacitance measurement
mode. Every time the mode is changed, calibration would be needed. The calibration procedure is simple.
We just have to leave our meter with nothing connected except the reference capacitor and inductor as
shown the following circuit diagram. This is the Hartley oscillator and the core part of the entire device.

R1 R5
100k 10k
L1 (2 R3
_Q’OUYY\ ° El]
100K
10u
R4
47k
U1
— C1 ¢
100n A
.— —
—B
R2 COMPI I
100k C3

| m— |
10u D
&

During this time, the reference component value is measured and saved. This value would be deducted
during unknown component measurement. During calibration, the meter’s display would show
instruction for not placing any external component.

After the calibration is completed, unknown components can be placed and measured accordingly. These
are all what the program’s main loop does.

while(TRUE)
{
t = (pulse_ticks);
value = ((double)t * (double)t);

if(mode_button == FALSE)

{
delay_ms(60);
while(mode_button == FALSE);
calibration_done = 0;
mode++;

if(mode > 1)
{

mode = 0;
}
}

if(calibration_done == 0)

{

lcd_putc("\f");

lcd_gotoxy(1, 1);
lcd_putc("Calibrating....");
lcd_gotoxy(1, 2);
lcd_putc("Place no part.");
delay_ms(cal_delay);
lcd_putc("\f");

if(mode == 0)

{
ref = (value * scaling_factor_c);
lcd_gotoxy(1, 1);
lcd_putc("C.ref/nF:");
lcd_gotoxy(1, 2);
printf(lcd_putc, "%3.1g ", ref);

}

if(mode == 1)

{
ref = (value * scaling_factor_I);
lcd_gotoxy(1, 1);
lcd_putc("L.ref/uH:");
lcd_gotoxy(1, 2);
printf(lcd_putc, "%3.1g ", ref);

}

delay_ms(cal_delay);
lcd_putc("\f");

calibration_done = 1;

}

else

{
Icd_gotoxy(1, 1);

switch(mode)

{

case 1:

{

value = (value * scaling_factor_c);
lcd_putc("Ind./uH:");

break;

}

default:
{

value = (value * scaling_factor_l);
lcd_putc("Cap./nF:");

break;
}
}

value -= ref;

if((value <0) || (value > 1000))

{

value = 0;

}

lcd_gotoxy(1, 2);
printf(lcd_putc, "%3.1g ", value);
1

delay_ms(100);
};

Some time-proven good-old tricks have been applied in this code:

1. Instead of measuring frequency, time period is measured. This saved one calculation step because
frequency is inverse of time period.

2. Rather than using math library, some values that need to raised by some power, is simply
repeated multiplied. For example, the time period needs to be squared but instead it is multiplied
by itself.

3. Definitions have been used in order to identify some important constant values and reduce
calculation.

4. The use of global variables has been kept to a minimum. Although the code is nothing compared
to the memory resources of the PIC18 microcontroller.

5. Interrupt methods have been employed to make the program efficient and as less blocking as
possible.

6. Unused hardware peripherals have been reinitialized to reduce power consumption and other
issues.

Demo

00 K]]I

ki ERGRCE

OO0

GG

g =
L : I
4) . =7}
) BATG RS .
= DS18B20 3
mEE .E‘. 3 D 'gt, =
_- o [EE o,
G | =l
. ‘ [#0] O "' & 5" - o.n
& | [@]o =

TR A

o Laies e i)

i 3 2
)
K
It
[
o

Errrrri
BiSTTI%
g
»

"
a
i
!
D
»
>,
o
0
]

YouTube video link: https://youtu.be/R6ZhQxcOhSo

Happy coding.

Author: Shawon M. Shahryiar
https://www.facebook.com/qgroups/microarena
https://www.facebook.com/MicroArena

23.08.2022

https://youtu.be/R6ZhQxcOhSo
https://www.facebook.com/groups/microarena/
https://www.facebook.com/MicroArena?ref=hl

	Schematic
	Components
	Code
	Theory
	Explanation
	Demo

