

When designing or debugging an electrical or electronics device, it is very important to know the values

of the components that have been used on board. With a multimeter most of the components can be

easily measured and identified but most ordinary multimeters do not have options to measure inductors

and capacitors as this is rarely needed. However, without capacitors there are literally no circuits while

complex circuits may have inductors in them. A LCR (inductor-capacitor-resistor) measurement meter can

be used to determine the aforementioned components but usually such meters are pretty expensive.

Here, I will share a method with which we can measure inductors and capacitors with some degree of

accuracy. For the purpose, we can use a common 8-bit microcontroller. I have used a PIC18F452. Of

course, any other microcontroller will be equally suitable for the purpose as long as the calculations and

procedures are maintained. We will also need a small external analogue circuit based on LM393 dual

analogue comparator. This circuit is a simple Hatley oscillator. The idea is to measure the frequency or

time period of the oscillator. When a new component such an inductor introduced to the oscillator, its

frequency and therefore time period changes. We can then back-calculate component value.

PIC18F452 is an 8-bit PIC18F series microcontroller. In terms of hardware is much more capable than the

popular PIC16F877A or PIC16F887. However, we do not need any other hardware apart from a capture

compare module (CCP) and a timer. The main reason to use a PIC18F is its operating clock speed which is

40MHz.

https://en.wikipedia.org/wiki/Hartley_oscillator

Schematic

Components

As shown in the circuit diagram all the components would be needed. Components L2 to L6 and C4 to C8

are test components. These are present only in simulation and not physically. Rotary switches SW1 and

SW2 are only use in simulation schematic and are physically not present. A 2x16 alphanumerical LCD is

used for displaying info. And a button connected to pin C0 is used for mode selection.

Code

#include <18F452.h>

#device *=16

#fuses NOWDT, PUT, H4, BROWNOUT, BORV42, NOLVP, NODEBUG, NOCPB, STVREN, CPD
#fuses PROTECT, NOWRT, NOWRTB, NOWRTC, NOWRTD, NOEBTR, NOEBTRB, NOOSCSEN

#use delay(clock = 40M)

#include "lcd.c"

#define mode_button input(pin_C0)

#define C_cal_in_nF 100.0
#define L_cal_in_uH 100.0
#define pi 3.142
#define cal_delay 1000

#define scaling_factor_c ((10.0 / (4.0 * pi * pi * L_cal_in_uH)))
#define scaling_factor_l ((10.0 / (4.0 * pi * pi * C_cal_in_nF)))

unsigned int32 overflow_count = 0;
unsigned int32 pulse_ticks = 0;
unsigned int16 start_time = 0;
unsigned int16 end_time = 0;

void setup(void);

#int_TIMER1

void TMR_ISR(void)
{
 overflow_count++;
}

#int_CCP1

void CCP_ISR(void)
{
 end_time = CCP_1;
 pulse_ticks = ((65536 * overflow_count) + end_time - start_time);
 start_time = end_time;
 overflow_count = 0;
}

void main(void)
{
 short calibration_done = 0;
 unsigned char mode = 0;
 unsigned long t = 0;
 double ref = 0.0;
 double value = 0.0;

 setup();

 while(TRUE)
 {
 t = (pulse_ticks);
 value = ((double)t * (double)t);

 if(mode_button == FALSE)
 {
 delay_ms(60);
 while(mode_button == FALSE);
 calibration_done = 0;
 mode++;

 if(mode > 1)
 {
 mode = 0;
 }
 }

 if(calibration_done == 0)
 {
 lcd_putc("\f");
 lcd_gotoxy(1, 1);
 lcd_putc("Calibrating....");
 lcd_gotoxy(1, 2);
 lcd_putc("Place no part.");
 delay_ms(cal_delay);
 lcd_putc("\f");

 if(mode == 0)
 {
 ref = (value * scaling_factor_c);
 lcd_gotoxy(1, 1);
 lcd_putc("C.ref/nF:");
 lcd_gotoxy(1, 2);
 printf(lcd_putc, "%3.1g ", ref);

 }

 if(mode == 1)
 {
 ref = (value * scaling_factor_l);
 lcd_gotoxy(1, 1);
 lcd_putc("L.ref/uH:");
 lcd_gotoxy(1, 2);
 printf(lcd_putc, "%3.1g ", ref);
 }

 delay_ms(cal_delay);
 lcd_putc("\f");

 calibration_done = 1;
 }

 else
 {
 lcd_gotoxy(1, 1);

 switch(mode)
 {
 case 1:
 {
 value = (value * scaling_factor_c);
 lcd_putc("Ind./uH:");

 break;
 }

 default:
 {
 value = (value * scaling_factor_l);
 lcd_putc("Cap./nF:");

 break;
 }
 }

 value -= ref;

 if((value < 0) || (value > 1000))
 {
 value = 0;
 }

 lcd_gotoxy(1, 2);
 printf(lcd_putc, "%3.1g ", value);
 }

 delay_ms(100);
 };
}

void setup(void)
{
 setup_wdt(WDT_OFF);
 setup_adc(ADC_OFF);
 setup_adc_ports(NO_ANALOGS);
 setup_spi(SPI_DISABLED);
 setup_psp(PSP_DISABLED);
 setup_ccp1(CCP_CAPTURE_RE);
 setup_ccp2(CCP_OFF);
 setup_low_volt_detect(LVD_43);
 setup_timer_0(T0_OFF | T0_8_BIT);
 setup_timer_1(T1_INTERNAL);
 setup_timer_2(T2_DISABLED, T2_DIV_BY_1, 16);

 setup_timer_3(T3_DISABLED);
 set_timer0(0);
 set_timer1(0);
 set_timer2(0);
 set_timer3(0);
 enable_interrupts(INT_CCP1);
 enable_interrupts(INT_TIMER1);
 enable_interrupts(global);
 lcd_init();
 lcd_putc("\f");

}

Theory

We know that:

𝒇𝒐𝒔𝒄 =
𝟏

𝟐𝝅√(𝑳𝑪)

For a known set of L and C the equation above becomes:

𝒇𝑹𝒆𝒇 =
𝟏

𝟐𝝅√(𝑳𝑹𝒆𝒇𝑪𝑹𝒆𝒇)

We also know that the inductance of inductors adds when connected in series:

𝒇𝒐𝒔𝒄 𝒏𝒆𝒘 =
𝟏

𝟐𝝅√((𝑳𝑹𝒆𝒇 + 𝑳)𝑪)

Similarly, the total capacitance of capacitors sums up when connected in parallel:

𝒇𝒐𝒔𝒄 𝒏𝒆𝒘 =
𝟏

𝟐𝝅√(𝑳(𝑪𝑹𝒆𝒇 + 𝑪))

The above equation can be rearranged as follows:

𝑪 =
𝟏

𝟒𝝅²𝑳𝑹𝒆𝒇𝒇𝒐𝒔𝒄 𝒏𝒆𝒘²
− 𝑪𝑹𝒆𝒇

where

𝑪𝑹𝒆𝒇 =
𝟏

𝟒𝝅²𝑳𝑹𝒆𝒇𝒇𝑹𝒆𝒇²

We also know that:

𝑻 =
𝟏

𝒇

Thus, the above equation for unknown capacitor becomes:

𝑪 =
𝑻𝒐𝒔𝒄 𝒏𝒆𝒘

𝟐

𝟒𝝅²𝑳𝑹𝒆𝒇

− 𝑪𝑹𝒆𝒇

or

𝑪 =
(𝑻𝒐𝒔𝒄 𝒏𝒆𝒘

𝟐 − 𝑻𝑹𝒆𝒇²)

𝟒𝝅²𝑳𝑹𝒆𝒇

The same is equation also holds true for unknown inductor too:

𝑳 =
𝑻𝒐𝒔𝒄 𝒏𝒆𝒘

𝟐

𝟒𝝅²𝑪𝑹𝒆𝒇

− 𝑳𝑹𝒆𝒇

or

𝑳 =
(𝑻𝒐𝒔𝒄 𝒏𝒆𝒘

𝟐 − 𝑻𝑹𝒆𝒇²)

𝟒𝝅²𝑪𝑹𝒆𝒇

Thus, by knowing two different frequencies or time periods, the value of any unknown capacitor or

inductor can be determined.

A PIC18F452’s CCP1 module along with Timer 1 is used to capture the oscillations coming out of a Hartley

oscillator. With nothing unknown connected except the 100nF and 100µH reference capacitor and

inductor respectively, the reference oscillation frequency is about 50kHz (about 20µs time period).

Whenever a new component is added this frequency changes.

Explanation

Basing on the theory discussed, we would need PIC18’s high processing speed along with a timer and

capture module. We would also need an LCD to display results. The setup function shown below highlights

these modules and their settings.

void setup(void)
{
….
 setup_ccp1(CCP_CAPTURE_RE);
….
 setup_timer_1(T1_INTERNAL);
….
 set_timer1(0);
….
 enable_interrupts(INT_CCP1);
 enable_interrupts(INT_TIMER1);
 enable_interrupts(global);
 lcd_init();
 lcd_putc("\f");
}

CCP1 module is set for rising edge capture. This means that CCP1 will capture Timer 1’s count whenever

it senses rising edges. CCP modules in PIC microcontrollers usually work Timer 1 module and so its count

is captured. Capturing two consecutive rising edges result in period measurement of incoming waveform.

This is what we would need the most.

To further make thing work apparently in concurrent manner, interrupts are used. CCP1 interrupt is

triggered when there is a rising edge capture and Timer 1 interrupt is used to keep track of timer

overflows. The current and previous capture counts are stored while taking care of Timer 1 overflow.

These would be used to determine time period. Timer 1 will rarely overflow because it would only

overflow if the incoming waveform has very low frequency and this would literally never happen.

#int_TIMER1

void TMR_ISR(void)
{
 overflow_count++;
}

#int_CCP1

void CCP_ISR(void)
{
 end_time = CCP_1;
 pulse_ticks = ((65536 * overflow_count) + end_time - start_time);
 start_time = end_time;
 overflow_count = 0;
}

PIC18’s PLL is used to upscale an external 10 MHz crystal oscillator clock to 40 MHz. This is reflected in the

fuse bit and clock settings.

#fuses H4 ….

#use delay(clock = 40M)

However, PICs usually take 4 clock cycles per instruction and so the effective system clock frequency is 10

MHz.

𝑺𝒚𝒔 𝑪𝒍𝒌 =
𝑷𝑳𝑳 𝑪𝒍𝒐𝒄𝒌 𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚

𝑪𝒍𝒐𝒄𝒌𝒔 𝒑𝒆𝒓 𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏
=

𝟒𝟎 𝑴𝑯𝒛

𝟒
= 𝟏𝟎 𝑴𝑯𝒛

Thus, one tick of Timer 1 is:

𝑻𝒊𝒎𝒆 𝒑𝒆𝒓 𝑻𝒊𝒎𝒆𝒓 𝟏 𝑻𝒊𝒄𝒌 =
𝟏

𝑺𝒚𝒔 𝑪𝒍𝒌
=

𝟏

𝟏𝟎 𝑴𝑯𝒛
= 𝟏𝟎𝟎 𝒏𝒔 = 𝟎. 𝟏 µ𝒔

Thus, at the base frequency of 50 kHz (20 µs), Timer 1 would count:

𝑻𝒊𝒎𝒆𝒓 𝟏 𝑪𝒐𝒖𝒏𝒕 𝒐𝒓 𝑻𝑹𝒆𝒇 =
𝟐𝟎 µ𝒔

𝟎. 𝟏 µ𝒔
= 𝟐𝟎𝟎

Since the reference inductor and capacitor values are know the following equations simply as:

𝑪 =
(𝑻𝒐𝒔𝒄 𝒏𝒆𝒘

𝟐 − 𝑻𝑹𝒆𝒇²)

𝟒𝝅²𝑳𝑹𝒆𝒇

𝑪 =
(𝑻𝒐𝒔𝒄 𝒏𝒆𝒘

𝟐 − (𝟐𝟎𝟎 × 𝟎. 𝟏 µ𝒔)²)

𝟒𝝅𝟐 × 𝟏𝟎𝟎 𝒖𝑯

𝑪 =
(𝑻𝒐𝒔𝒄 𝒏𝒆𝒘

𝟐 − 𝟐𝟎𝟎²)

𝟒𝝅𝟐 × 𝟏𝟎𝟎 𝑯
 × 𝟎. 𝟎𝟏 µ𝒔𝟐

𝑪𝒊𝒏 𝒏𝑭 =
(𝑻𝒐𝒔𝒄 𝒏𝒆𝒘

𝟐 − 𝟐𝟎𝟎²)

𝟒𝝅𝟐 × 𝟏𝟎𝟎
 × 𝟏𝟎

The same applies for inductor measurement too and the formula simplifies as shown below:

𝑳𝒊𝒏 µ𝑯 =
(𝑻𝒐𝒔𝒄 𝒏𝒆𝒘

𝟐 − 𝟐𝟎𝟎²)

𝟒𝝅𝟐 × 𝟏𝟎𝟎
 × 𝟏𝟎

The fixed constants are defined in definitions on top of the code:

#define C_cal_in_nF 100.0
#define L_cal_in_uH 100.0
#define pi 3.142
#define cal_delay 1000

#define scaling_factor_c ((10.0 / (4.0 * pi * pi * L_cal_in_uH)))
#define scaling_factor_l ((10.0 / (4.0 * pi * pi * C_cal_in_nF)))

Now let’s say we want to measure 220nF. So, for this amount of capacitance, the oscillator frequency

would be:

𝒇𝒐𝒔𝒄 𝒏𝒆𝒘 =
𝟏

𝟐𝝅√(𝟏𝟎𝟎 µ𝑯(𝟏𝟎𝟎 𝒏𝑭 + 𝟐𝟐𝟎 𝒏𝑭))
= 𝟐𝟖𝟏𝟑𝟒. 𝟖𝟖𝟓 𝑯𝒛

i.e.

𝑻𝒐𝒔𝒄 𝒏𝒆𝒘 = 𝟑𝟓. 𝟓 µ𝒔

Timer 1 would count 355 counts while capturing this frequency from the oscillator.

Now if we back-calculate using the formulae shown previously, the capacitor is found to be:

𝑪 =
(𝟑𝟓𝟓² − 𝟐𝟎𝟎²)

𝟒𝝅𝟐 × 𝟏𝟎𝟎
 × 𝟏𝟎 = 𝟐𝟏𝟕. 𝟗 𝒏𝑭

Yes, the reading is a bit off from actual value but close enough to actual value. The error occurs because

timer counts cannot be anything other than integers. This error can be smartly compensated in code.

The push button connected to pin C0 is used to select either inductance or capacitance measurement

mode. Every time the mode is changed, calibration would be needed. The calibration procedure is simple.

We just have to leave our meter with nothing connected except the reference capacitor and inductor as

shown the following circuit diagram. This is the Hartley oscillator and the core part of the entire device.

During this time, the reference component value is measured and saved. This value would be deducted

during unknown component measurement. During calibration, the meter’s display would show

instruction for not placing any external component.

After the calibration is completed, unknown components can be placed and measured accordingly. These

are all what the program’s main loop does.

 while(TRUE)
 {
 t = (pulse_ticks);
 value = ((double)t * (double)t);

 if(mode_button == FALSE)
 {
 delay_ms(60);
 while(mode_button == FALSE);
 calibration_done = 0;
 mode++;

 if(mode > 1)
 {
 mode = 0;
 }
 }

 if(calibration_done == 0)
 {
 lcd_putc("\f");

 lcd_gotoxy(1, 1);
 lcd_putc("Calibrating....");
 lcd_gotoxy(1, 2);
 lcd_putc("Place no part.");
 delay_ms(cal_delay);
 lcd_putc("\f");

 if(mode == 0)
 {
 ref = (value * scaling_factor_c);
 lcd_gotoxy(1, 1);
 lcd_putc("C.ref/nF:");
 lcd_gotoxy(1, 2);
 printf(lcd_putc, "%3.1g ", ref);

 }

 if(mode == 1)
 {
 ref = (value * scaling_factor_l);
 lcd_gotoxy(1, 1);
 lcd_putc("L.ref/uH:");
 lcd_gotoxy(1, 2);
 printf(lcd_putc, "%3.1g ", ref);
 }

 delay_ms(cal_delay);
 lcd_putc("\f");

 calibration_done = 1;
 }

 else
 {
 lcd_gotoxy(1, 1);

 switch(mode)
 {
 case 1:
 {
 value = (value * scaling_factor_c);
 lcd_putc("Ind./uH:");

 break;
 }

 default:
 {
 value = (value * scaling_factor_l);
 lcd_putc("Cap./nF:");

 break;
 }
 }

 value -= ref;

 if((value < 0) || (value > 1000))

 {
 value = 0;
 }

 lcd_gotoxy(1, 2);
 printf(lcd_putc, "%3.1g ", value);
 }

 delay_ms(100);
 };

Some time-proven good-old tricks have been applied in this code:

1. Instead of measuring frequency, time period is measured. This saved one calculation step because

frequency is inverse of time period.

2. Rather than using math library, some values that need to raised by some power, is simply

repeated multiplied. For example, the time period needs to be squared but instead it is multiplied

by itself.

3. Definitions have been used in order to identify some important constant values and reduce

calculation.

4. The use of global variables has been kept to a minimum. Although the code is nothing compared

to the memory resources of the PIC18 microcontroller.

5. Interrupt methods have been employed to make the program efficient and as less blocking as

possible.

6. Unused hardware peripherals have been reinitialized to reduce power consumption and other

issues.

Demo

YouTube video link: https://youtu.be/R6ZhQxcOhSo

Happy coding.

Author: Shawon M. Shahryiar
https://www.facebook.com/groups/microarena
https://www.facebook.com/MicroArena 23.08.2022

https://youtu.be/R6ZhQxcOhSo
https://www.facebook.com/groups/microarena/
https://www.facebook.com/MicroArena?ref=hl

	Schematic
	Components
	Code
	Theory
	Explanation
	Demo

