
 Lets
Make LED Matrix Displays

Its Fun to Learn and Explore

Amer Iqbal Qureshi

Microtronics Pakistan

I
 am so fortunate to have a great collection of friends and family who have been very sup-
portive over the years. As my Electronics experience and knowledge have matured I have
been blessed with forming some great relationships in the community. I have to thank
everyone who has been supportive in this over the years. We have a group of similar

minded friends, all professionals in their own respective fields yet having one thing in common,
selfless and dedication to electronics and promoting the knowledge. I will strongly suggest to form
similar groups in your local community as nothing is more rapid than sitting together and talking
about.

With that said, there are some specific people to thank. First, Numan, who has been a great
friend to me personally, and who is always excited when good things happen for me. Umer, you
really helped me keep my composure and perspective in the past year with so many things coming
at me. Shahzad, took many hours out of his busy job to make pieces of odd hardware that group
needed and I would be failing in my duties if I don't mention Irfan who is always there to share the
industry experiences and arranging components from the local market. Everyone in group contrib-
uted significantly in suggesting the hardware design and software making.

Nothing of this magnitude is without challenges and they have been helpful in solving the many
challenges that arose. Producing a book is no small task, but ultimately rewarding. It is always an
honor to have the opportunity to share knowledge and experience about something you love with
others on the scale possible with a book like this. I know I have learned a lot and I hope to keep
learning and sharing.

This is not a textbook and does not contain every little detail of LED displays. Professionally I
am a Cardiovascular Surgeon, with lots of passion for electronics. This is from a hobbyist to other
hobbyists. I hope this will act as a starting point for many who want to see how best we can use
our spare times making things, and enjoying the fun.

Amer Iqbal Qureshi

ameriqbalqureshi@yahoo.com

Acknowledgments

D
ear reader thank you for picking up this book and welcome to the wonderful and
exciting world of LEDs. The idea for this book was born when I wanted to make
my own LED moving signs, although internet was full of knowledge and ideas yet
no where I could find a complete step by step solution as to help me in getting

started. So I decided to compile my experiences in one place, helping students and hobbyists to
begin. Moreover this project acts as a base point to learn many abstract ideas about programming
and take a proper channel to develop applications in a “Laired” manner. The concepts and pro-
gramming methodology you will learn in this book will be helpful in solving many other electron-
ics projects you come across.

There are many different hardware and software solutions to drive the LED matrices, I would
however discuss the simplest one, that requires minimal hardware, and the one that is easily avail-
able anywhere in world. Secondly emphasis is on learning by doing, I shall take you step by step,
to explain the concepts. It is very easy to publish the final software and hardware design, but that
does not explain the hidden algorithms and brilliant ideas behind. You can always modify the code
and experiment your way to extend whatever you learn in this book.

Many experiments in the book will be mentioned to highlight the concepts and may not be actu-
ally used in the final code, yet they act as building sound understanding of what is happening un-
der the hood. One special requirement for this project that I ultimately settled was to minimize the
hardware requirements and try to implement the things through software techniques. Nevertheless
I will talk a little bit about the additional hardware that can reduce the programmer’s work but add
to the complexity of circuit design and therefore manufacturing. One of the major advantages of
microcontrollers is to reduce the physical hardware and do the needful done in software.

My second requirement was to make the hardware pluggable into any microcontroller lines,
may it be PIC, AVR or the commonly used Arduino. I will however use PIC microcontroller, for it
is easily available and easy to program.

What you need?
You need two sets of tools to explore all this. First a hardware that we will shortly discuss. This

includes an LED matrix module, a few shift registers and a few current limiting resistors. You can
assemble the hardware on breadboard or as I prefer on a perf-board. Even more useful is if you can
find a pre-built hardware. I however suggest making your own.

The second set of tools needed are software compilers and simulators. Simulator is optional but
really helpful in experimenting before making real hardware. We will be using MikroC, a popular
compiler from microelectronica (www.mikroe.com). Demo version will be sufficient for this pro-
ject and this can be downloaded from their site. For simulations I will use Labcenter Proteus ISIS
version 7.10

As far as microcontroller is concerned you use any, but I will use PIC18F2550, running at
48MHz. The advantage of this controller is that it has built-in USB connectivity that I use to pro-
gram directly without need of an external programmer, you can use your own microcontroller
setup, and programmer as you like, but I will certainly dedicate a section on how to use and setup
the PIC18F2550 platform.

Introduction

 What is an LED ?
So lets start from the basics, as we are going to do with

LEDs, it is better to have an understanding about these small
devices or may be components. This knowledge is essential in
the sense that you might need to tweak a little bit with your
hardware in case your LEDs have differing specs.

So LED is basically a diode, as you all know, it has a PN
junction and like any PN junction it does conduct in one direc-
tion only. The second thing is that there is certain level of
threshold voltage that needs to be applied to make it conduct.
Before that voltage it has very high resistance, so you can not
assess its resistance when its conducting and therefore the cur-
rent being drawn. Even more important is the fact that an over
-current will kill the PN junction, if your source is able to provide upto many 100mA current,
when the breakthrough voltage is applied the resistance of LED falls to almost negligible, and it
conducts all the current that source can provide, this high current would certainly damage the
LED. It is therefore important to know the current requirement of the LED, and depending upon
your supply voltage calculate a series current limiting resistor. Most of the LEDs commonly used
consume 25mA of current, however the bigger and brighter
LEDs might be consuming more current. So you got to check
out either with manufacturer or measure with a meter. Keep it
in mind that LEDs are current driven devices, not voltage
driven. To keep the constant illumination they need a constant
current source, which is beyond this discussion.

In most projects we use microcontrollers and therefore the
supply voltage available is 5V DC. Using Ohm’s law I=V/R we
calculate the value of R for 25mA. Since all diodes have a volt-
age drop across them which is roughly 0.8V so driving voltage
is 5-0.8= 4.2V thus R is calculated as 168 Ohms. We can round it off to 150 Ohms. The resistor
has to be in series and therefore anywhere on anode or cathode side.

The colors in LEDs is determined by the type of PN gap, and impurities added to them. It is not
determined by the plastic casing color, you might have encountered transparent LEDs with various
colors when illuminated.

Multicolored LEDs are also common these days, they are actually two or three LEDs manufac-
tured in a single casing having one end as common electrode and others are independently driven.
There are Bi-color or Tri-color LEDs available. The
brightness of an LED is a function of current flowing,
and remember this not a linear relation, on top of that
the sensitivity of our eye to detect a change in bright-
ness is also not linear, it can detect even minor changes
in intensity at lower brightness levels than at higher
brightness. Same is true about different colors, the sen-
sitivity to appreciate red is more than green. Thus
when making different shades of light by mixing dif-
ferent colored LEDs does not bear uniform response as
mathematics. So if you drive red and green LEDs to-
gether the with same current, the result is not orange or
yellow, but a slight orange, with more tinge of green. Therefore if we want to mix the colors and
make different shades we have to drive the LEDs with varying currents. This is achieved dynami-
cally with reducing the driving voltages. Changing the driving voltage using digital systems is

achieved through “pulse width modulation” or PWM. We will talk about this in a later chapter
when different shades are to be made.

So if you are going to use multicolor LEDs and want to mix the colors, find a way to modify
the current flow to get optimum results, and if you are good at programming you can use PWM to
programmatically control this. I personally used a 100 Ohms resistor with green LEDs and 220 or
330 Ohms resistors with Red LEDs. Since I used Bi-color modules, I am not sure what to do with
blue LEDs.

What is an LED Matrix
Driving individual LEDs as separate device needs a separate control line for each LED, that

means a lots of wires and huge hardware. LED matrix is a spe-
cial arrangement of LEDs in the form of an array, or matrix.
Where Each LED has a row and a column.

Its not only that LEDs are arranged in manner, they still have
two leads each. So if we have an 8 rows and 8 columns , an 8x8
LED matrix we have a total of 64 LEDs and have to manage
128 leads. OK we can connect all the cathodes together, still we
have 64 anodes to take care of.

In matrix LEDs we play another clever trick while wiring
them. So that all the anodes in a row are connected together as

one common anode, and all the cathodes in a column are connected as a single cathode. Now if we
have an 8x8 matrix we will have eight wires for the 8 rows and 8 wires for the 8 columns. You can
see in this connection diagram if lets say we give positive supply to row 1 and negative or ground
to column 1 the upper left led glow. In this way we can control any single LED, but there are some
limitations you can quickly figure out some combinations of LEDs that can not be simultaneously
turned on without affecting others. Luckily there is a solution for that, and here nature comes to
help us, we tend to illuminate a single row at a time and do it so fast that our eyes can not make a
track of the change, and we see the entire matrix glowing. This is called “persistence of vision” or

POV in brief. (http://en.wikipedia.org/wiki/Persistence_of_vision).

Making the Matrix
The first thing is to wire up the LEDs. There are two options do decide first. Weather we want

our rows to be connected to anodes of LEDs, or Cathodes to be
connected. This does not matter significantly as we can compen-
sate for this in our software. However certain hardware designs
and driver ICs may require one or the other situation. I would be
using anode connected to the rows and cathodes to the columns
as shown in the matrix wiring diagram above.

The second question is if you want to wire the LEDs yourself
or want to buy pre-made modules. The choice is yours. When
making with hand on a veroboard, make sure all LEDs have
equal brightness, as there are different batches of available LEDs with varying intensity on the
same current.

This is really a time consuming job, but a fun to do. The things tend to become even more com-
plex if you want to use multicolored LEDs. Another important point while selecting these LEDs is
that use the dull LEDs, and not the ones with crystal clear lens in front, because they tend to glow
so sharply that the image quality is rendered useless. So use good illumination but dull LEDs.

Pre-Built LED Modules
Today many commercially made LED modules, having, single, double or tricolor LEDs are

available. The have all the necessary wiring done inside them and only rows and columns pins are

brought out for further interfacing.

They are available in different sizes and configurations like 5x7,
8x8, 16x16 and so on. Once you understand the basic interfacing tech-
niques you can make larger displays by joining multiple modules side
by side and connecting them together as one matrix.

The image above shows 8 modules of 8x8 connected together to make a one large matrix 32 x
16 LEDs. Once the matrix is made the software will deal with it as one matrix, and mot as 8 sepa-
rate modules.

In this book I will use single module of 8x8 LED matrix having bi
-color LEDs in each pixel. We will be able to make three colors red,
green, yellow and off-course black. Later we will use PWM tech-
niques to make even more shades by altering the intensities of LEDs
dynamically through software.

So each pixel of our module will have actually two LEDs in it. A
total of 128 LEDs will be there. We can consider for design purpose
as two matrices, The anodes of all the LEDs in a row are tied to-
gether as rows and cathodes are separately for each column of red
and green separately.

This will therefore give us 8 pins for the rows and 16 pins for the
columns. A total of 24 pins. The arrangement of pins in modules are not as rows and columns, but
they are mixed up. So you have to find out manually using a battery with current limiting resistor
to find out the row pins and column pins for each color. This is a daunting task but necessary, be-

cause a slight mistake will spoil the entire project.

The image above shows the wiring of module I am using check with your module, as this might
vary from vendor to vendor.

Scanning The Display
As I have mentioned previously this type of display

technology (and Even Televisions) use POV as a tool
to give an illusion of display. Now when we have the
matrix we have two options, either we illuminate one
row at a time, with a pattern of LEDs On or Off, give it
some time to cast an image on our eyes, and then turn
it off and move to next row. Repeat the same process
again and again. Alternately we can set the LEDs in a
column and then scan the columns. Both techniques
are equally good. For smaller displays like this the col-
umn scanning is easy as you don't have to manipulate
the data bits much, but as you increase the length of
display matrix, more and more columns have to be
scanned and the display becomes jerky. I have there-
fore chosen the row scan method so that the concepts

gained on this small scale be applied easily to larger scale displays. As you can see when a single
row is displayed, and all LEDs in that row are supposed to be ON, there can be huge demand of
current. Like if we have 16 LEDs in one row (8 red and 8 green) and each one needs about 25mA
for full brightness, then we need at least 16 x 25= 400mA of current. So the current source circuit
must be able to supply this current, falling short of this the LEDs would appear dim. Commonly a
transistor can be used here to power the necessary current. Driving them through microcontroller
pins can be dangerous as this can damage the IO pin circuitry. Or you can use an intervening
buffer that can power the entire row. The current limiting resistors will be on cathode side as we
have to limit the current through red more than green.

Hardware Design Options
Now that we have decided we will go for row scanning, we need to find out the best solution

for selecting rows and passing data to columns. Remember
we have 8 rows and 16 columns (8 for red and 8 for green).
If we use a microcontroller with fairly large number of digi-
tal I-O lines we can use two 8 bit ports for the columns and
one 8 bit port through a reasonable buffer to address the
rows. This will need a total of 24 digital I-O lines. Program-
ming will be simple as setting column data will take two
bytes to be passed on two ports and row can be selected by
setting the appropriate port bit to 1 and then shifting down by
one position on every data change. This design will therefore
require a controller with large number of I-O lines and the
display can not be used with controllers having smaller num-
ber of I-O lines. As shown in this figure as our display has
two matrices we need another set of 8 digital I-O lines with
this arrangement, secondly if we need to expand the display,
like having 4 or five modules together in one long row, there is hardly any commonly available
controller that has so many I-O lines. So this method is out of our scope.

Shift Registers
Shift registers are another option, these registers can take serial data one bit at a time and shifts

the bits like a conveyer belt, giving out the result as parallel output on its pins. These are also
called serial to parallel shift registers. Another beauty of these registers is that they can be cas-
caded together to make a long daisy chain. All they
need is three wires for input, one for data bit, second
for clock bit to shift data and third latch bit, which is
given a pulse when all data has been sent, and pulsing
will make the data appear on output pins. Many such
registers are available, the 74HC595 being most com-
monly used. So if we put two 8 bit shift registers in
series with each other, and tie their output lines to col-
umns of our matrices, we will be able to send 16 bits
of data on just three digital I-O lines, which is not a
big problem for even a small microcontroller.

Scanning Rows
Now the issue to select rows, since we have 8 rows and we have to select one row at a time, we

have many options. We can use CD4017, which is a decade counter, it takes a single I-O line to
clock it. It will set its outputs high one after the other after every pulse, after 10 pulses the first one

will again start the cycle. But there are two problems,
first it has 10 outputs and we want to clock it back to
first line after 8, OK we can give two extra pulses after
8, not a big issue, secondly when it is first powered on,
the outputs are in unknown state, we can never know
how to get the first I-O high. Fortunately there is a Re-
set pin, that when clocked will reset the chip to state
0.this will be ok for us, as it will take an additional two
I-O lines one for clock and other for reset, and 8 outputs Q0 to Q7 can be used to select the indi-
vidual rows.

What if we later decide to use two rows of 8x8 matrices to make a 16x32 screen? One can think
of cascading the two CD4017 chips, that’s fair, but when we will clock 11th time the next chip
will get a pulse and step forward, but first chip will reset back to select row 0. thus we will have
two rows selected and on each this is not a desirable behavior. So this arrangement is good for this
project at-least but not a good one if we want to expand the design.

3 to 8 Line decoder (74HC138)
Another option is to use a 3 to 8 line decoder. This

chip takes three digital inputs, and a binary number set to
these three lines will select the corresponding output.
Like if you set 101 then this binary number corresponds
to decimal 5 and Y4 will be selected. This particular chip
(74HC138) sets the selected pin low and all others high,
which is not what we need, however its good arrange-
ment to drive eight corresponding PNP transistors. We
can also find 3 to 8 decoder IC with active high outputs
that can be used directly to drive our display rows. Simi-
larly we have 74HC154 which is 4 to 16 bit decoder. It can accept 4 bit binary coded decimal
number on its 4 inputs and can select one of its 16 outputs. Moreover with little extra circuitry we
can make more input bits and output bits. This sounds a reasonable solution. So if we use it we
need three more I-O lines for row selecting and three I-O lines for shift registers to send column
data, a total of 6 I-O lines. Well a reasonable solution.

Using 3 Cascaded Shift Registers
The last option that comes to my mind is to use another shift register for row selecting. Since

row is to be selected every time column data has been sent, there is no need to drive this shift reg-
ister separately, and we can cascade all three shift registers together, clocking data in first shift
register and sending in three bytes (24 bits) first two bytes contain column data and last byte row
select. This way our interface will need only three I-O lines from your microcontroller to drive the
entire display, even if you add more modules to make it longer, only add more shift registers, but
still you will need only three I-O lines, Data, Clock and Latch.

I would use this configuration, for this project. To select a row the corresponding bit of row
register will be set to 1, and to select a column the corresponding bit of shift register will be set to
0. I have used 74HC595 and its I-O lines have sufficient current handling capability to power an
entire row with 16 LEDs turned ON. You can add the transistor buffers for rows if you need to add
more modules together as this will need more energy to light many LEDs in the same row. I per-
sonally did not felt the need of transistor buffers for this single bi-color LED module, although
adding transistors improves brightness.

So here is our final schematic of the display. Note this only the display circuit, and does not in-
clude the microcontroller circuit. As we discussed previously I do not want to restrict users to any

one microcontroller, so that interfacing remains open.

In the above schematic the matrix is shown as two separate modules, whereas in fact these are
packaged as one module, but must be considered as two separate modules with anodes of rows as
common, and cathodes separate. Current limiting resistors have been shown here as 100 Ohms, on
both modules, as previously said we need to reduce the brightness of red little bit more than green,
so better use a slightly higher resistors for the red module, I used 220 Ohms for red and 100 Ohms
for green.

Understanding 74HC595

Shift Register
Since our display is going to depend heavily on the

shift registers, it will be appropriate here to get a little
review of this component. Shift registers are also
called serial to parallel converters, they take in serial
data on a single data line, and show the results on its
output as a complete byte.

The 74HC595 shift register has a series of 8 mem-
ory locations that can pass the bits sent to first mem-
ory into the next one, just like a “push” when new bit
arrives the all bits are shifted one step to next level.

Latch is a special memory that when activated takes the snapshot of shift registers and show
them on outputs. After that if the shift register values are changed the change is not reflected on
the output pins until the latch is activated again. This is a good mechanism, as this will not show

up the shifting bits as garbage on our output, only when we are finished sending the data, we want
it to be reflected on outputs. The outputs of latch memory have an additional control line called
“output enable”. When this line is low the memory in latches as 1s and 0s is reflected on outputs,
when this line is high the output pins are practically disconnected from memory, they are neither 1,
nor 0. Simply speaking they are in third state, which is called indifferent. We have permanently
tied this pin on all shift registers to GND. So that the output is always enabled. To be honest if you
want to control the entire brightness of display through software you can connect this pin to a
PWM output to control the brightness, this would however need another IO line of microcontrol-
ler. Nevertheless it’s a good idea to have separate Output enables for red and green to individually
control the brightness. The RST pin is a reset pin and when given a small pulse of logic 0 will set
all shift registers to 0. we have connected these pins to logic 1 permanently so we do not want to
reset the chips.

Now we are left with three pins DS is data pin, whatever data present either 1 or 0 will be taken
into first memory location of the shift registers. This happens when the shift clock line is given a
pulse of 0 to 1 and back to 0. This pulse will also shift the contents of other registers to next levels
by 1 state.

All this shifting will be taking place inside the shift registers and the results will not appear on
output pins. When the necessary data has been stuffed in a pulse of 0 to 1 and pack to 0 on latch
pin will copy the shift register data on output pins and keep it there no matter what is happening
down into the shift registers.

Shifting Data to next Chip
Now that we can shift data bits inside the 74HC595 shift register, how to daisy chain them, so

that data bits can be shifted to next chip. This will effectively convert one 8 bit shift register into
16, 24 or even 32 bits shift register.

The shift register has 8 outputs, Q0 to Q7 and an additional Q7’ output. This is not connected to
latch but a direct extension of the internal shift registers. So when 8 bits have been transferred,

shifting in of 9th bit will cause 8th bit to appear on Q7’ pin, which can be fed in directly into the
DS pin of next chip. The shift clock and latch pins of all pins can be connected together and
clocked simultaneously. In this way an endless daisy chained 74HC595 can be connected together
to get a long parallel outputs.

74HC595 can be clocked data at a maximum frequency of 100MHz, which is more than what
we need to update our display.

Microcontroller Setup
This publication is not meant to go into details of setting up your microcontroller board, you

can use any microcontroller with this. All you need is three lines of digital I-O from controller, one
for data, one for data clock and one for latch.

You are free to use any controller, this publication however will use Microchip PIC microcon-
troller PIC18F2550. This controller has many more pins than needed for interfacing with this dis-
play board, other pins can be used for interfacing with other chips like external EEPROM, real
time clock or USB communication from PC to get new messages for display etc. as far as driving
the display is concerned you can get away with as simple as 16F84 or even smaller controller.

I assume you are aware of programming the microcontroller, using your preferred programmer
and development board. I will connect the display board to PIC as:

DS pin : RC0

CLK pin : RC1

Latch pin: RC2

The display board will be powered from 5V from the microcontroller board. In case you want
to give it external 5-12V supply connect GND to the MCU board as well.

Compiler
You are free to use any compiler you are comfortable with, may it be BASIC language, or C.

The concepts mentioned here will be generic applicable to all compilers. There can be little differ-
ences among compilers
how the address the ports
and port pins etc. you can
therefore accommodate
these changes as re-
quired. I will be using
Microelectronica MikroC
V6.0 compiler and inte-
grated development envi-
ronment. MikroC can be
d o w n l o a d e d f r o m
www.mikroe.com, the
demo version is suffi-
cient for this example
project however.

O
ur display board is now ready and we are position to give it a test run. As you know
we have three shift registers in series. We will always be shifting out 3 bytes of
data, first byte will be for green cathodes, second byte will be for red cathodes and
third byte to select the anodes common row. The red and green bytes will contain

logic 0 to activate a column, and the row select bit will be logic 1 to power a row. Microcontrollers
usually have an SPI module, which is called serial to parallel interface that can accept a byte of
data and shift out the byte one bit at a time from a designated SPI data pin along with necessary
clock signals from another pin. As we want to make our software as much generic as possible we
will write our own custom code to accept 3 bytes of data and then shift them out one bit at a time
along with clock signals. The data will be sent using three globally defined pins, in our case RC0,
RC1 and RC2.

This test program should produce an output as shown in
this image. If you look closely you will appreciate that each
pixel has two light sources, one red and other green.

Lets dissect this very basic program. In main function
we have simply configured the tree pins connected to dis-
play as output pins and initialize their values to 0. next we
call the shout() function that is the heart of this software.
First we shifted out a value of 0, then another 0 and finally
255. this will push first 0 to all cathodes of red, next 0 to all
cathodes of green and last 255 to all anodes of all rows.
This should light up all 128 LEDs on display and it should appear yellow, due to mixing of red and
green colors.

Now we need to discuss the Shout() function, that how it is sending out the bits from a byte. It
is accepting a byte of data in local variable d as an unsigned data because we want to use all 8 bits.

Testing Display

void Shout(unsigned char d)

{

short j;

for(j=0;j<8;j++) // Shift out 8 bits

 {

 PORTC.B0= d & 1 ; // test least significant bit if its 1

 PORTC.B1=1;PORTC.B1=0; // clock

 d=d >> 1; // shift bits to right by 1 to get next bit

 }

}

void main() {

TRISC.B0=0;TRISC.B1=0;TRISC.B2=0; // make the 3 pins output

PORTC.B0=0;PORTC.B1=0;PORTC.B2=0; // initialize values

Shout(0); // turn on all red

Shout(0); // turn on all green

Shout(255); // select all rows

PORTC.B2=1;PORTC.B2=0; // Pulse the latch pin

}

Then we want to shift out the least significant bit of the variable. To test the least significant bit if
its 1 or 0 we do a binary operation of AND with number 1
(0000001). The answer will be 1 if the least significant bit
of d is 1 and 0 if this bit is 0. we set the result of this test
into the data bit, PORTC.B0 after setting the bit to appro-
priate level we give a clock pulse of logic 1 and back to 0
on PORTC.B1. This will transfer the first bit to shift regis-
ter. Now we want to repeat the same process to second bit
of variable d. we shift the variable d to right by 1, d >> 1,
this will move the bits in variable d by 1 place in d and
now the second bit is in least significant bit position. We
repeat the same process again and now pushes second bit into shift registers. We do it 8 times so
that entire byte is shifted out. After calling this function 3 times from the main program, we give a
pulse to the latch pin and that will transfer the 24 bits data to shift register pins and then to the dis-
play module.

Testing Red and Green Modules
Sending out 0 on first shift register will select all red columns. Sending 255 to the next shift

register will turn all green off. You can reverse this by sending 255 first and 0 to second, this will
turn on all green LEDs.

void Shout(unsigned char d)

{

short j;

for(j=0;j<8;j++) // Shift out 8 bits

 {

 PORTC.B0= d & 1 ; // test least significant bit if its 1

 PORTC.B1=1;PORTC.B1=0; // clock

 d=d >> 1; // shift bits to right by 1 to get next bit

 }

}

void main() {

TRISC.B0=0;TRISC.B1=0;TRISC.B2=0; // make the 3 pins output

PORTC.B0=0;PORTC.B1=0;PORTC.B2=0; // initialize values

While(1) {

Shout(0); // turn on all red

Shout(255); // turn OFF all green

Shout(255); // select all rows

PORTC.B2=1;PORTC.B2=0; // Pulse the latch pin

Delay_ms(2000);

Shout(255); // turn OFF all red

Shout(0); // turn ON all green

Shout(255); // select all rows

PORTC.B2=1;PORTC.B2=0; // Pulse the latch pin

Delay_ms(2000);

}

}

W
ell by now hopefully you have tested your hardware, with a very basic and rudi-
mentary code. Remember the underlying code will remain the same, or almost
same, but we will need to organize it in a manner that is helpful in making it us-
able by many different level of users as well as adapt the same code for larger

displays with minimal or no changes at the user code. What we are going to accomplish here is to
break the code into many different levels or layers, sitting one on top of the other. This kind of ap-
proach is truly professional. Although its very easy to build your application in a single file, it is
more professional to distribute the code into at least three levels.

This diagrammatic representation shows the hierarchy of the code libraries. The core idea of
this type of organization is to abstract the hardware level details from end users or even intermedi-
ate library developers. In any hardware manufacturing service, the electronics engineers work in-
dependently from the software developers, though in contact but they design the hardware accord-
ing to the specifications and cost constraints and the software developers have to adapt the soft-
ware accordingly. The super or end user of the hardware, who in our case is also a programmer
and want to use the device in his projects must be facilitated to use the device without core under-
standing of the hardware details. A second and equally important aspect is, if we change the hard-
ware internally, the end user must not have to re-write his applications, all he needs to do is plug in
the appropriate device driver layer, recompile the application and it should work with new hard-
ware.

We will therefore work in this fashion, we have got the hardware ready, and know its interfac-
ing requirements, as we experimented in previous examples, now lets begin step by step. So the
first layer to develop is the device driver, which is in immediate contact with the hardware physi-
cally. This driver will be built to expose the basic functionality of driving the display and a few

Best Programming Practices

basic functions to drive it.

 Video Memory
Previously we have seen how we can send data directly to the shift registers and then coordi-

nate them with the row scanning to make an image. Remember we can not turn all rows ON at the
same time, as we can send data over two shift registers for one row at a time. We therefore need a
multiplexing system, where we send data for one row, activate that row, send data for next row,
deactivate previous row and turn on next row. Thus we will be sending data for one row at a time.
All this will be done so fast that our eye will not be able to perceive the difference and see the im-
age as one. In order to do that we abstract the 8x8 matrix as a memory map of 64 bits, each bit rep-
resenting one LED. Since this map will be in memory variables, they can be manipulated in any-
way we like by our software. The device driver will be smart enough to copy the contents of this
memory map onto the physical display continuously. Since we have two 8x8 matrices in one
piece, we will consider them as separate maps. All we need is a
2 dimensional array with 8 rows and 8 columns. We need two
such arrays, one for red and other for green. An 8x8 array of
character type will require 64 bytes of RAM and both arrays
will take 128 bytes. So make sure your controller has this much
RAM available.

We can simplify this down a little bit, as right now we are
not going to implement varying intensities of colors, we just
need that red LED in a particular row and column is ON or
OFF, same is the case with green. This can be represented by a
bit only. So we need 8 bytes, one for each row. The bits in each
byte will represent the columns.

The array rows can be accessed using the index number and columns can be accessed by indi-
vidual bits in the selected array. Note since the values stored in bit pattern will be sent to cathodes
shift registers, a value of 0 will turn on the corresponding LED. The usual practice however is to
represent an ON led with logic 1. we will therefore implement this later idea, that in the memory
map the LED that needs to be turned ON will be indicated by a logic 1 in the corresponding bit
and a logic 0 will turn it OFF. Our device driver will invert the bits before sending them to the
shift registers. This is the first abstraction we have decided, to make the user, or even device driver
writer to think the logical way of logic 1 is ON and logic 0 is OFF.

So we will have two such arrays in memory, one for red and the other for green, for any given
row, one byte from each array will be sent to the respected shift register.

Selecting a Row
Now we need to address the data for third shift register, which is going to select a row in the

matrix. We have total of 8 rows, and we have to select one at a time. A logic 1 in the correspond-
ing bit of shift register will select the row. To select first row we need to send 00000001 for next
row it will be 00000010 for third 00000100. Notice how the 1 from bit 0 is being shifted to left
one at a time. We can simply implement this by setting a decimal value of 1 to the variable and
then shifting left by 1 every time we want to select next row. This is a workable solution, but what
if we have decided to increase the rows to 16? The eight bit microcontroller can not do 16bits
math. The solution is to store the equivalent values in another 8 items array, and using a counter
variable to use the respective value every time we want to select a row.

Automatic Frame Refresh
In order to keep the display updated, we need to copy the map arrays to the display matrix peri-

odically. This can be done easily within a loop. However when our program or application needs
to do another job, like reading serial port, or some other task, this loop will be interrupted and dis-
play will not look uniform. The display must be refreshed automatically at pre-defined intervals.
This is implemented using interrupt system. Most controllers have this interrupt system, and can
be configured on many different triggers. We will use Timer0 of PIC microcontroller to generate a
trigger periodically when we will update the display.

An Overview of Interrupts
Although this is in itself a long subject, but in this book our objective is learning and exploring

the core technologies. It will be therefore very
much in time to have a brief overview of the in-
terrupts. As you know any processor can do only
one task at a time, if we want to manage multiple
tasks we need to switch periodically among
tasks. This is timed by an internal timer or some
other trigger. Once the interrupted task is com-
pleted the control returns back to the main proce-
dure from where it was interrupted.

We will be using Timer0 of PIC microcontrol-
ler to trigger this interrupt. On every interrupt we
will send one row data to our display. In PIC mi-
crocontrollers there are many registers that need to be configured in order to set the interrupt sys-
tem. Moreover we have to make a function that will handle the interrupt routine.

Different families of microcontrollers
have different registers to set the behavior
of these timers. I am using PIC18F2550
@48MHz so all my calculations here will
be according to this controller. You can ad-
just the values and registers accordingly.

T0CON is the first register to configure
the behavior of timer0. this is an 8 bits reg-
ister and setting each bit has specific mean-
ing for its configuration.

In PIC18F2550 Timer 0 can be config-
ured as 8 bit timer or 16 bits timer, the timer
can also be configured to take pulses from
internal oscillator or pulses from an external pin. It can also use a prescaler, which is actually a
pulse divider to slow down the count. We will be using this timer as 16 bits so that after 65536
pulses it will generate an interrupt. We shall not use the prescaler.

Second important register to configure is the interrupt system configuration register. This is
named INTCON. This register controls the main interrupts. As you can see it has bit 5 named
T0IE bit, setting this bit to 1 will enable interrupts on Timer0. Bit 7 called GIE is general Interrupt

enable, and setting this bit to 1 will enable the entire interrupt system. This is actually the main
switch of interrupts. Also notice bit 2, T0IF. This is a flag which is set automatically to 1 when the
Timer 0 has generated an interrupt. We have to clear this bit back to 0 in our interrupt handling
routine to indicate that interrupt has been serviced.

Frame Rates
Now that we have talked about the interrupts, and we know we can configure an automatic sys-

tem to refresh the physical display from contents in our shadow memory or you can call video
memory. The question arises how frequently we should do that. If we do it too frequently, we tend
to spend extra time in servicing interrupts and our main application will perform poorly. If we do it
too slowly the display will look jerky and might be flickering. So we have to find an appropriate
frame rate. The human eye can not detect a change if frame rate is above 30 frames per second.
We will choose a rate of 50 to give our display more stable look. So we need the display to be re-
freshed 50 times per second. One frame will be updated in 1/50 = 0.02 seconds or 20mS. As we
will be updating one row on every interrupt the 20mS time would be divided in 8 rows, which is
2.5mS; we can round it to 2mS that will give a slightly higher frame rate but ok for our purpose.

The firing of interrupt depends upon the clock speed, and the length of counter. The interrupt
will fire when counter rolls back to 0. This is 256th pulse on 8 bit timer and 65536th pulse on 16
bits timer. Calculating exact number of ticks required to generate a 2mS interval needs little math.
In general for the above speed, timer 0 in 16 bit configuration will overflow and generate an inter-
rupt in 5.4mS. We can reduce this time by preloading the timer registers with some values so that
they don't start off from 0, but from a fixed value and therefore will reach 65535 earlier. Fortu-
nately microelectronica have a small utility to calculate the best settings for timer interrupts.

As you can see in this image it has calculated to stuff a value of 41536 (0xA240) to achieve an
exact 2ms interrupt.

Now with all this basic background knowledge we are ready to code our display driver.

N
ow that we have all the background knowledge and understanding we are ready to
start coding. First we are going to write the core device code, that is the display
driver. This part will be responsible for making its video memory arrays, setup the
interrupt routines and copy the contents of memory into the shift registers, step

through the rows and keep track of the row count. It will encapsulate the display and give us a
logical view of the display as a matrix of rows and columns. So that we will be able to address
each pixel or LED by its coordinates, and then based upon that basic hierarchy we will build our
next level of library.

Start MikroC integrated development environment and create a new project with settings ac-
cording to your microcontroller hardware. The display device can be connected to microcontroller
on any three digital lines, and our device driver software will have the capability to adapt accord-
ingly. For simplicity I would connect the Data line to RC0, Clock line to RC1 and Latch line to
RC2.

When you start a new project a new text editor opens with main() function. Although we don't
need this for our device driver, but will be used to test the things. In your project add a new file
named “Mat_Driver.c”; this will be our device driver and contain all the necessary code.

Our project is named as Matrix therefore Matrix.c will be the file with main function to test the
display. The underlying code will be developed in separate files. Now lets come to the
Mat_driver.c file. Also add a “matrix.h” a header file that will contain the prototype definitions of
our functions and the parameters they need.

Level 1: Matrix Device Driver

Add the Mat_driver .c to Project

Start this code, we have included the matrix.h file that will later contain the function definitions
as we proceed.
extern sfr sbit Mat_DS;

And other similar statements indicate that we have a variable or symbol named Mat_DS which
is a bit type and points to a bit in some special function register on the microcontroller. The actual
value of this bit is not defined in this file, and has been termed as extern, meaning some other call-
ing program will define it. We will define the connections of our device as Mat_DS, Mat_CLK
and Mat_LAT for data, clock and latch pins. Corresponding to them are the TRIS register pins that
define the direction of these pins, either as input or output, we need them as output in any case.

unsigned char mat_row[8]={1,2,4, 8,16,32,64,128 };

unsigned char mat_i=0;

Next we have defined an array of unsigned characters, having eight elements. They have been
assigned the values as shown. If you convert these values to binary numbers you will see they have
a logic 1 which is shifting to left. These values will be used to select the row, and corresponding
mat_i is an index to track the current row.

unsigned char mat_r[8]={0,0,0,0,0,0,0,0};

unsigned char mat_g[8]={0,0,0,0,0,0,0,0};

Similarly there are two arrays mat_r[] and mat_g[] both with 8 elements each. These are the
video memory for red and green matrices. Each element corresponds to a row and eight bits in
each will correspond to pixels.

Note mat_r[], mat_g[], mat_row[] and mat_i are all global variables, as they have been declared
outside any function. They can be accessed from any part of the program, and no other part of pro-
gram should try to redefine them.

#include "matrix.h"

// 8x8 Bicolor LED matrix display driver

// SPI Mode Data, Clock , Latch

// Three Bytes : Row Select, Green, Red

// red is least byte

// mat_row, mat_g and mat_r are reserved global arrays these names can not be

 used in any other part

extern sfr sbit Mat_DS;

extern sfr sbit Mat_CLK;

extern sfr sbit Mat_LAT;

extern sfr sbit Tris_Mat_DS;

extern sfr sbit Tris_Mat_CLK;

extern sfr sbit Tris_Mat_LAT;

unsigned char mat_row[8]={1,2,4, 8,16,32,64,128 };

unsigned char mat_i=0;

unsigned char mat_r[8]={0,0,0,0,0,0,0,0};

unsigned char mat_g[8]={0,0,0,0,0,0,0,0};

// Initialize the matrix, set Tris registers, and setup the interrupt system on

Timer 0

void Init_Matrix() {

 Tris_Mat_DS=0; //set as output

 Tris_Mat_CLK=0; //set as output

 Tris_Mat_LAT=0; //set as output

 Mat_DS=0; Mat_CLK=0; Mat_LAT=0; //clear all pins

 // setup interrupt on timer 0 2ms ineterrupt

Now the first function we want is to initialize our display driver. This function will set the di-
rections of pins to which display has been attached and also set the Timer0 and its interrupt sys-
tem.

Now since we have added a function to the driver file, add its prototype to the matrix.h file:
void Init_Matrix(void);

Next we need a function to transfer three bytes of data into the shift registers. This is the most

important function as it accepts three bytes of data as parameters, and transfers them as one bit
each into the shift registers. Notice that the data in shift registers for red and green have to be logic
0 to make LED ON. Whereas we want it to be logic 1 in our image map, so we have inverted the
data before sending.
green = ~green;

This will effectively convert all 1s to 0s and all 0s to 1s. Now add the prototype of this function
to the matrix.h file:
void Shout(unsigned char row, unsigned char green, unsigned char red);

Our next function is the heart of this driver, update display; this function will be called from the

 T0CON = 0x88; // start timer, 16 bit, no prescaler

 TMR0H = 0xA2; // Initial values to get interrupt at 2mS

 TMR0L = 0x40;

 GIE_bit = 1; // Enable General Interrupt

 TMR0IE_bit = 1; // Enable Timer0 Interrupt

 }

// Shift out the data to three shift registers

// the active column is 0 on shift registers whereas it is 1 in our array

// therefore the values are inverted first before shifting out

void Shout(unsigned char row, unsigned char green, unsigned char red) {

 short j;

 green = ~green; // invert bits because led is on when bit is 0 (sink)

 red=~red;

 for(j=0;j<8;j++) // Shift out red First

 {

 Mat_DS= red & 1 ; // test least significant bit if its 1

 Mat_CLK=1;Mat_CLK=0; // clock

 red=red >> 1; // shift bits to right by 1 to get next bit

 }

 for(j=0;j<8;j++) // Shift Out Green

 {

 Mat_DS= green & 1 ; // test least significant bit if its 1

 Mat_CLK=1;Mat_CLK=0; // clock

 green=green >> 1; // shift bits to right by 1 to get next bit

 }

// The row bits are 1 to select a row, therefore they don’t need to be inverted

 for(j=0;j<8;j++) // Shift Out Row select

 {

 Mat_DS= row & 1 ; // test least significant bit if its 1

 Mat_CLK=1;Mat_CLK=0; // clock

 row=row >> 1; // shift bits to right by 1 to get next bit

 }

 Mat_LAT=1;Mat_LAT=0; // Clock Latch to appear data.

}

interrupt service routine, every 2mS. This function will keep a track of the current row in mat_i
variable and transfer the data from mat_row, mat_r and mat_g arrays according to this index. After
display the current row it increments the index number so that on next interrupt next row is se-
lected. When the number reaches 8 it resets it back to 0. This this function will be called automati-
cally and will copy the image map from video memory to the physical display. Notice this func-
tion also clears the interrupt flag and sets the counter values back to initial values calculated to
give 2mS interrupt.

Also add its prototype to matrix.h file.
 void update_matrix();

This completes our basic display driver and it is ready for testing. What this basic driver should
do? This will continuously update the contents of display memory on LED matrix. As we had
talked previously this approach should abstract the hardware details from user or programmer and
allow minimum access to internal architecture. Right now if we want to manipulate the display we
need to write something directly into the display memory, and for that we must know the array
names, as well as their dimensions. Just to test the driver lets fill the red and green arrays with
some known values, like 255 for all ON, 0 for all OFF. It will be more convenient to have another
function named fill() to accept two parameters and fill the corresponding matrix arrays.

As usual add the function prototype to matrix.h file. Now our basic display driver is ready to
test. In our main program we need to define the three connection pins, define an interrupt function,
and call Initialize and update functions. Lets see how to do it.

// called every 2ms from the interrupt and shifts out one row of red and green

matrix array

// increments the row index mat_i

void update_matrix(){

 TMR0IF_bit = 0; // reset timer values, calculated for 48MHz

 TMR0H = 0xA2;

 TMR0L = 0x40;

 Shout(mat_row[mat_i],mat_g[mat_i],mat_r[mat_i]);

 mat_i++;

 if(mat_i==8)

 mat_i=0;

}

// Basic function to fill the Video RAM with pattrens of red and green

void fill(unsigned char r,unsigned char g) {

 short i;

 for(i=0;i<8;i++){

 mat_r[i]=r;

 mat_g[i]=g;

 }

}

// 8x8 Bicolor LED Matrix Display

#include "Matrix.h"

sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

First you must include the matrix.h file as this file contains the prototype definitions of func-
tions we need to call, next we have to define the location of our three connections, it is important
to use the names as defined in our library. Since end user will not be able to see the source code,
finally you will have to tell it in your documentation the names of these three global bit connec-
tions.
sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

sbit Tris_Mat_LAT at TRISC.B2;

The pin connections like PORTC.B0 etc are your own choice and you can connect to any digi-
tal I-O lines and in any combination you want, once defined here, the Mat_Init() function will take
care of everything. Remember some lines in microcontrollers are analog by default, like PORTA,
and PORTB in pic18F2550 so make sure you declare them as digital before using them.

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

Interrupt is a reserved name for interrupt function and will be called every time an interrupt
takes place, may it be from timer0 or any other interrupt source.in the interrupt routine just check
if the interrupt occurred due to timer0? If yes then call the update_matrix function. You can handle
other interrupts in this routine like USB communication etc that we will show later.
Init_matrix(); // Initialize matrix function, to setup interrupts

This function, Init_Matrix must be called once, in main program to initialize all the connection
pins, setup interrupt system and start the display driver. After that our driver is ready and now we
can manipulate the display memory directly (not recommended) or through specified functions to
take effect.
 fill(255,0); delay_ms(2000); // show red for 2 seconds

 fill(0,255); delay_ms(2000); // show gree for 2 seconds

 fill(255,255);delay_ms(2000);// show yellow for two seconds

We have called the fill function to fill the display memory with different colors, 255 is binary
11111111 so it will turn on All LEDS ON. You can try out different other combinations like,

Fill(0b10101010,0b01010101); decimal 170 and decimal 85. also try fill(240,15). You can play
with overlapping bit patterns to turn on yellow color, like 0b11110000, 0b00111100.

sbit Tris_Mat_LAT at TRISC.B2;

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

void main() {

Init_matrix(); // Initialize matrix function, to setup inter-

rupts

while(1) {

 fill(255,0); delay_ms(2000); // show red for 2 seconds

 fill(0,255); delay_ms(2000); // show gree for 2 seconds

 fill(255,255);delay_ms(2000);// show yellow for two seconds

}

}

T
here is really no-match for the fun and excitement when you get the real hardware
working. I personally love this thing, but there are times when a simulator can be
handy, like if you do not have ac-
cess to the real hardware, or before

building the hardware want to give a test run. A
simulator is good for this purpose. With some
limitations it can act as a good starting point, at-
least for learning. Many electronics simulators
are out there, each having its own merits and
demerits. I would however recommend to
choose one which has largest community sup-
port. This way you can not only share the ideas
and design tips but also will be able to see what
others are doing.

Labcenter electronics Proteus ISIS is one of the most commonly used schematic capture, simu-
lation and PCB designing software. Many commercial as well as hobbyists use this software and
share their work. One of the most beautiful things about this software is that it has a large number
of microcontrollers in its library and these models can take the compiled .hex files by any compiler
and run them in real-time. The real-time performance for high speed code will however require a
good PC, yet it’s a good choice for almost 90% of your needs.

This section is not going to be a tutorial on using Labcenter proteus software, but will give you
an introduction on how to simulate or LED module on this. Proteus is a complete design suite con-
sisting of two major modules. A schematic capture and other PCB layout. Here we are mainly in-
terested in schematic capture
module, where you can draw the
schematic connections from a
large library of available compo-
nents. Once the schematic is
drawn you can run the simulation
directly from here and use many
virtual tools to monitor the circuit
performance and states.

It has a huge library of com-
monly used microcontrollers as
well that can be used in your pro-
jects. The microcontroller model
when dropped into the schematic
can be given settings like clock
speed, and the .hex file to be
loaded for simulation. The .hex
file has to separately generated using any compiler software you like. In case you find something
wrong with your application, just make necessary corrections to the source file, recompile it and

Simulation Software

run the simulation again. It will automatically load the new compiled .hex file to reflect the
changes. Here is the image of our basic display design. The Proteus does not have Bicolor LED

matrix simulation module, so we have used two separate Red and green modules. Although this
will not show exactly what we have physically but can serve as a good model to test the function-
ality of code. The design has two sheets, one shown above with a display module and other with
PIC 18F2550 microcontroller connected to this module.

As you can see the DS, CLK and LTC symbols connect to similar symbols on display board
with RC0, RC1 and RC2 pins of microcontroller. Double clicking the microcontroller on sche-
matic will open its properties dialog, there we have setup the clock speed as 48MHz, the same as
my physical hardware is using and the .hex source file pointed to the same file generated by Mik-

roC and used to burn on my physical device. This image shows the running code paused at a mo-

ment when both led modules, red and green were ON , so that on physical hardware they would
appear as yellow.

I would strongly recommend you to use this software not only for schematic drawing but also
learning and experimenting before actually building the hardware. After a preliminary test if possi-
ble always go to physical hardware, as that is the ultimate destination.

I
n the previous section we have completed the basic device driver, our first layer of firm-
ware on top of the physical hardware, that is responsible for updating the display from
contents of display memory. Now we are going to start our second layer, which is the API
library to facilitate our end user. In this first part of our library we will write some basic

code to address individual bits in the display memory and expose the functionality to end user or
programmer to think of display as an array of rows and columns, individually addressable. Based
upon this basic functionality we will add more useful and power commands or procedures that can
be used in a variety of graphic tasks. So lets get started.

Just like you made a spate file for driver, make another file named “graphics.c”. This file will
contain all the necessary code for managing graphics on our display. The graphics library however
depends upon the driver code, which has the declarations for video memory. Add a reference to
“matrix.h” file so that we can add new prototypes to it. First we need to add a reference to the
video memory, which is a common place for all data. This memory has been declared in
Mat_driver.c file, so in our graphics.c we need to declare this reference as external, so that we can
manipulate it, and linker would actually fix its location.
extern unsigned char mat_r[];

extern unsigned char mat_g[];

Notice we have used the same names and data types as were used in mat_driver.c file. The key-
word extern indicates that the arrays have been declared somewhere else but can be used and refer-
enced in this file.

Turning a Pixel ON
As you know physically our one row consists of an entire byte, and individual bits in it corre-

spond to the physical LEDs on display. To turn an LED ON we must set the corresponding bit to 1
and to turn it OFF we must set it to 0. This is accomplished by bitwise operators in C program-
ming language. Individual compilers might give you some direct methods of setting the bit values,
I shall however use the generic C methodology to keep an independence from compilers.

This can be accomplished simply by OR operator. The given byte can be OR with a known
mask, the bit to be set high is set to 1 in the mask, so
that the OR operation will leave all other bits un-
modified and set the required bit to logic 1.

Like in this example we want to set bit no 1 as
high, we will OR it with mask 0b00000010 here all
other bits are 0 and only bit we are interested in is 1.
Now the trick is to make a desired mask. So if we
want to set nth bit as 1 then we need 8 different masks. Fortunately we have a shift left operator,
that will shift the bits to left by n bits. Thus 0b00000001 << 5 will be 0b00100000 now OR the
original number with this and we get the desired bit set.
unsigned char Set_bit(unsigned char ch, short n)

{

ch=ch | (1 << n);

Level 2: Graphics API Library

return ch;

}

This dummy function shows how to do it. Clearing a bit something different. You can not use
the same procedure to clear a bit. To clear a bit you have to AND with a mask, where required bit
is set to 0 and all other bits are set to 1. For example to clear bit 5 we need a mask 0b11011111
now when you AND it with the data all other bits will remain unaffected and only bit 5 will be
cleared to 0.
unsigned char clear_bit(unsigned char ch, short n)

{

ch= ch & ~(1 << n);

return ch;

}

In this function first we have shifted number 1 to left n times this will produce a mask similar to
previous function, next we invert it by ~ operator that will reverse all bits, the 1s will be 0 and 0s
will be 1s. Now we can AND this value to our number to clear the required bit.

Abstracting Colors
We have a display with two colors, and theoretically we can make many shades if we can alter

their brightness. Right now we will not fiddle with brightness but to turn one color or both will
give us 4 possible states, Black, Red, Green, Orange. Black is when both LEDs are OFF. Orange is
when Both LEDs are ON. So to make our life easier lets give them some arbitrary numbers, or
even names so that writing applications become little more easy. Lets say we define that Black=0,
Red=1, Green=2 and Orange=3. We can pass these values as symbols to our functions and the
function will interpret which LED to turn ON or OFF. We can do it by using #define in our header
file, but there is another better way in C called enumerations.
enum colors {black,red,green,orange};

Enter this line to your Matrix.h file this will define colors as black=0, red=1, green=2 and or-
ange=3. then we will use these names in our functions to select a color.

The row and column concept; from now onwards we will be using the concept of rows and col-
umns, the row is yth element of the video array, and column is xth bit in that byte. Enter the code
above in your graphics.c file, and remember to enter the prototype entry in matrix.h file. This func-
tion pset accepts three parameters, the row and column describe the coordinates of a pixel and clr
the desired color. Based upon the clr value sent in calling program the function switches between
one of the 4 possible states and sets the bits accordingly.

// Sets the pixel of column and row to color specified

void pset(short row,short col, short clr) {

 switch (clr) {

 case red: mat_r[row]=mat_r[row] | (1 << col); // set red

 Mat_g[row]=Mat_g[row] & ~(1 << col);// clear green

 break;

 case green: mat_g[row]=mat_g[row] | (1 << col); // set green

 Mat_r[row]=Mat_r[row] & ~(1 << col); // clear red

 break;

 case orange:

 mat_r[row]=mat_r[row] | (1 << col);

 mat_g[row]=mat_g[row] | (1 << col);

 break;

 case black:

 Mat_r[row]=Mat_r[row] & ~(1 << col);

 Mat_g[row]=Mat_g[row] & ~(1 << col);

 break;

 }

}

Now lets test it. We have the device driver in place and we have one very elementary basic pro-

cedure to set or clear the pixel selected by row and column coordinates. Switch to you main func-
tion where all other things, like initialization and interrupt handling will remain the same, just
change the code for the loop.
pset(0,0,red);

pset(7,7,green);

These are the two lines required by our end user or programmer to turn on the respective LEDs

on display. Notice we have used the enumeration
names of red and green to indicate color, this
makes program reading more easy, we could also
simply replace the clr with 1 and 2 to indicate red
and green.

Here is the output from simulator, off course
these will be one matrix in real hardware. Notice
that row 0 is at bottom and row 7 is at top, as far as
geometry is concerned this is OK, but convention-
ally in displays the 0,0 is top left corner and 7,7
should be the bottom right. You can easily correct

// 8x8 Bicolor LED Matrix Display

#include "Matrix.h"

sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

sbit Tris_Mat_LAT at TRISC.B2;

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

void main() {

Init_matrix(); // Initialize matrix function, to setup interrupts

pset(0,0,red);

pset(7,7,green);

}

Coordinates
0,0

Coordinates
7,7

it by changing the order of rows wiring, or even in software. For now its OK for us.

Now your top level programmer can easily play with pixels anyway he likes, can draw lines,
rectangles or even bitmaps, wow great. Lets see how we can draw two horizontal lines on red ma-

trix. The code below shows how simple it is, just we had a loop with variable x, and on two rows,
we have drawn single pixels at every x column. Now that we know how to draw a horizontal line,
it will be a nice idea to implement this in our graphics library, for future use, so that we just give

coordinates and it draws the line. Make a new function named hline in your graphics.c file and
also add its prototype to the matrix.h file. The function is easy to understand, similar to you code
above it, accepts the four parameters, and draws a horizontal line.

The above code draws a series of horizontal lines, of incrementing widths making you appear a
traiangle. The objective is to show now by combining the pset function we have made a new func-
tion to draw the horizontal line. Similarly we can make a vertical line drawing function, and name
it as vline. This time column number will be fixed and starting and ending row numbers will be
used to draw the line.

// 8x8 Bicolor LED Matrix Display

#include "Matrix.h"

sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

sbit Tris_Mat_LAT at TRISC.B2;

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

void main() {

short x;

Init_matrix(); // Initialize matrix function, to setup interrupts

for(x=0;x<8;x++) {

 pset(2,x,red);

 pset(5,x,red);

}

}

// Draw a horizontal line on a given row from col1 to col2

void hline(short row, short col1, short col2, short clr) {

 short x;

 for(x=col1;x<=col2;x++) {

 pset(row,x,clr);

 }

}

void main() {

short x;

Init_matrix(); // Initialize matrix function, to setup interrupts

for(x=0;x<8;x++) {

 hline(x,0,x,green);

 }

}

As usual write the code in your graphics.c file and add its prototype to the matrix.h file. I hope
you understand the prototype defines the function name and its required parameters in the header
file, so that the compiler knows what to expect.

You can see how easy it is to draw the horizontal and vertical
lines, just by combining the pset command appropriately, now we
can combine the hline and vline functions to draw a rectangle. We
will accept two pairs of coordinates and draw two horizontal and two vertical lines and this will
make a rectangle. In addition we want to be able to fill the rectangle or box with a color of our

choice, so we provide another parameter, fill color.

Now all you need is one line of code in your main program to
draw a rectangle with filled interior. If you want to fill with black,
just give black as fill color. Make sure you enter the function pro-
totypes in matrix.h file as well.

// Draw a verticle line on a given column from row1 to row2

void vline(short col, short row1, short row2, short clr) {

 short x;

 for(x=row1;x<=row2;x++) {

 pset(x,col,clr);

 }

}

void main() {

short x;

Init_matrix(); // Initialize matrix function, to setup interrupts

 hline(2,0,7,red);

 hline(5,0,7,red);

 vline(2,0,7,green);

 vline(5,0,7,green);

}

// Draw a rectangle between two coordinates with border color and fills the

rectangle with a fill color

void rect(short row1, short col1, short row2, short col2, short clr, short

fill_clr) {

short x,y;

 hline(row1,col1,col2,clr);

 hline(row2,col1,col2,clr);

 vline(col1,row1,row2,clr);

 vline(col2,row1,row2,clr);

// fill rectangle with fill color

 for(y=row1+1;y<row2;y++){

 for(x=col1+1;x<col2;x++) {

 pset(y,x,fill_clr);

 }

 }

void main() {

short x;

Init_matrix(); // Initialize matrix function, to setup interrupts

rect(0,0,7,7,red,green);

}

It would be a great idea to have a function to clear whatever is on display, we can use the fill
command we made for our driver for this purpose, however its more elegant to have this function

as part of our graphics library, we will name it as Cls and give it a color parameter to fill the screen
with.

This code will produce a nice animation of multiple filled rectangles, being drawn again and
again.

Scrolling Display
Scrolling display in either direction, will need shifting of data within the memory array. This

can be accomplished directly by having access to the mat_r and mat_g arrays. The arrays have
been declared in mat_driver.c file and are public. We can access them in graphics.c file but for that
we must declare them as external. Alternately we can write the scrolling functions directly in the

driver file. Both options are equally valid. I would like to add the functions of scrolling to
mat_driver.c file. These functions will later be used to scroll the text, or even graphic data.

This function iterates through both memory arrays, and shifts the bits to right. In between the
shifts there is a variable degree of delay that can be used to control the speed of scrolling. Shift
right operation will scroll the display to left because when shifting data to shift registers we had
shifted least significant bit first. Exactly opposite will be scroll right, and very similar will be
scroll up and scroll down. The scroll up and down do not need to manipulate buts, but the entire

// Clear screen and fill the entire screen with a clr

void cls(short clr) {

 switch (clr) {

 case black: fill(0,0);break;

 case red: fill(255,0);break;

 case green: fill(0,255);break;

 Case orange: fill(255,255);break;

 }

}

void main() {

short x;

Init_matrix(); // Initialize matrix function, to setup interrupts

cls(black);

while(1){

for(x=0;x<5;x++) {

 rect(x,x,7-x,7-x,red,green);

 delay_ms(100);

 }

}

}

// scroll the video memory to left by x positions

void scroll_left(short x,short speed){

 short i,p;

 for(p=0;p<x;p++) {

 vdelay_ms(speed);

 for (i=0;i<8;i++) {

 mat_r[i]=mat_r[i] >> 1;

 mat_g[i]=mat_g[i] >> 1;

 }

 }

}

array elements can be shifted within the array.

Enter these functions in mat_driver.c and also corresponding entries in matrix.h file.

Reading status of a Pixel
Sometimes it is necessary to determine directly from display memory if the location of a pixel

is already on or off. We need a function to return the status of pixel directly from display memory.

void scroll_right(short x, short speed){

 short i,p;

 for(p=0;p<x;p++) {

 vdelay_ms(speed);

 for (i=0;i<8;i++) {

 mat_r[i]=mat_r[i] << 1;

 mat_g[i]=mat_g[i] << 1;

 }

 }

}

void scroll_up(short y,short speed) {

 short i,p;

 for(p=0;p<y;p++) {

 vdelay_ms(speed);

 for(i=0;i<7;i++) {

 mat_r[i]=mat_r[i+1];

 mat_g[i]=mat_g[i+1];

 }

 mat_r[7]=0;

 mat_g[7]=0;

 }

}

void scroll_down(short y,short speed) {

 short i,p;

 for(p=0;p<y;p++) {

 vdelay_ms(speed);

 for(i=7;i>0;i--) {

 mat_r[i]=mat_r[i-1];

 mat_g[i]=mat_g[i-1];

 }

 mat_r[0]=0;

 mat_g[0]=0;

 }

}

// get status of a pixel

char pget(char x,char y) {

 if(((Mat_r[y] >> x) & 1) && ((mat_g[y]>>x) & 1))

 return orange;

 if((Mat_r[y] >> x) & 1)

 return red;

 if((Mat_g[y] >> x) & 1)

 return green;

return black;

}

S
o far we have seen how to draw graphics using pixels on our display. Similarly we can display bitmap im-
ages, and sequential display of bitmap images makes animations. The present section is about displaying text.
Text has two components or phases. One is the text itself, which consists of ASCII characters, stored in some
string, the second phase is its graphic or bitmap representation. The bit map representation of a given charac-

ter set is called font. You can define your own font to represent a character set. The standard text character set consists
of alpha numeric characters, 0-9, A-Z and a-z along with some special character like comma, semicolon, space and
period etc. first we have to decide the character set. We an decide a small limited number of characters, like only capi-
tal A-Z and ignoring special characters like $ # etc. or choose a full ANSI character set. Remember the larger the char-
acter set larger will be our bitmap and of-course the storage space for it.

Bitmap of a character
Lets first talk about bit map of a character. Most of the character display systems, like character LCDs or PC terminals
use a 5x7 array of bit matrices to represent and display a character. This is a fairly good matrix size to display and
represent most of the commonly used characters. We have an 8x8 matrix
that can certainly accommodate the 5x7 matrix bitmap easily, or we can
have the liberty of using entire 8x8 space and make more detailed bit-
maps. The first step is to draw a matrix of empty squares on paper and
fill the appropriate boxes with pixels you want to turn on. Now you have
8 bytes of data, each bit representing one row, or may be a column as
you like. So each character for an 8x8 font will require 8 bytes of data.
The entire bitmap will need to be stored somewhere, you can store it as
part of the program memory as constants, or in microcontrollers
EEPROM. If your hardware permits the best place is to use an eternal
storage, like i2C EEPROM or and SD card. In this example we will try
to minimize the external hardware dependence and will store the charac-
ter map bit map in the program memory as constants.
Look at the character map of letter A. internally this will be stored as text
as ANSI, decimal 65, but as a display map this will occupy 8 bytes of
storage, We can store the map as vertical bits, or as horizontal bits. The
best option depends how our hardware is configured. Since we are scanning as rows, it will be very convenient to store
the bit map as rows, the corresponding numbers are shown on the right. If we store the vertical configuration then the
letter will appear as rotated on our display, as it will display the columns maps as rows. For now lets experiment a bit
and see how it goes.

Level 2: Displaying Text

// 8x8 Bicolor LED Matrix Display

#include "Matrix.h"

const unsigned char font[8]={0x18,0x24,0x66,0x66,0x7E,0x66,0x66,0x66};

extern unsigned char mat_r[];

sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

sbit Tris_Mat_LAT at TRISC.B2;

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

void main() {

short x;

The code looks simple, we have defined an array named font[8] having 8 bytes of data. The elements are pre filled
with rows data from the bitmap image. In the main program, using a loop we have filled the red matrix with each ele-
ment from the row, and here is the result. It is displaying letter A correctly, just as we constructed it in the bitmap.
This gives you another lesson, that not only alphanumeric characters you can make any symbols you like and make
their bitmaps.
Now what will happen if we replace the fonts[] array with vertical data.

Same program, but just by changing the bitmap array coding from horizontal to vertical our display has been rotated
by 90 degrees. Had we been scanning the columns instead of rows, this would appear absolutely perfect, but then the
rows data would appear rotated. So the take home message is we must have a bitmap coded as rows, because we are
displaying one row at a time. Of course we can always compensate for this in our software, and we will do this
shortly.

Generating the Bitmaps
Now comes the difficult question as to how to generate the bitmaps of all the text characters we want to be supported
by our display. One obvious method is to take a graph paper and pencil, draw the characters and using a binary calcu-
lator generate 8 character codes for each character.
Second somewhat easier method is to find some software, that can do this for us. This is certainly a good option. I
have found many such applications, available on internet with a grid of boxes, you can just click the boxes you want to
turn on, and it will generate the bitmaps for you. Still you have to draw every character yourself.
There are some applications that will accept the windows font name from you and make a full list of codes for you.
This is a nice option. I leave it to you to explore the internet and find a good solution, and share with colleagues and
fellows on our forum.
The option that I used was to borrow someone else's work, well a lazy approach but I need to concentrate more on the

Init_matrix(); // Initialize matrix function, to setup inter-

rupts

cls(black);

for(x=0;x<8;x++) {

 mat_r[x]=font[x];

 }

}

// 8x8 Bicolor LED Matrix Display

#include "Matrix.h"

const unsigned char font[8]=

{0x00,0x3F,0x7F,0x88,0x88,0x7F,0x3F,0x00};

extern unsigned char mat_r[];

sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

sbit Tris_Mat_LAT at TRISC.B2;

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

void main() {

short x;

Init_matrix(); // Initialize matrix function, to setup inter-

rupts

cls(black);

for(x=0;x<8;x++) {

 mat_r[x]=font[x];

 }

}

programming side than to sit back for days and generate the bitmap. Naturally I started my search using google and
soon found a lots of projects that were sharing their work. Most of the projects were made by hobbyists and their hand
-crafted bitmaps were rather incomplete. Continuing my search and I ended up on a site where they had a commercial
8x8 led matrix display and had a library of fonts for Arduino. The bitmap was quite extensive and made both for 5x7
as well as 8x8 displays. The code could be easily adapted to our project and suits us. I decided to use the 8x8 font, as

// defines 8x8 ASCII characters 0x20-0x7F (32-127)

unsigned const char font[96][8] = {

 {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //

 {0x00,0x60,0xfa,0xfa,0x60,0x00,0x00,0x00}, // !

 {0x00,0xe0,0xe0,0x00,0xe0,0xe0,0x00,0x00}, // "

 {0x28,0xfe,0xfe,0x28,0xfe,0xfe,0x28,0x00}, // #

 {0x24,0x74,0xd6,0xd6,0x5c,0x48,0x00,0x00}, // $

 {0x62,0x66,0x0c,0x18,0x30,0x66,0x46,0x00}, // %

 {0x0c,0x5e,0xf2,0xba,0xec,0x5e,0x12,0x00}, // &

 {0x20,0xe0,0xc0,0x00,0x00,0x00,0x00,0x00}, // '

 {0x00,0x38,0x7c,0xc6,0x82,0x00,0x00,0x00}, // (

 {0x00,0x82,0xc6,0x7c,0x38,0x00,0x00,0x00}, //)

 {0x10,0x54,0x7c,0x38,0x38,0x7c,0x54,0x10}, // *

 {0x10,0x10,0x7c,0x7c,0x10,0x10,0x00,0x00}, // +

 {0x00,0x05,0x07,0x06,0x00,0x00,0x00,0x00}, // ,

 {0x10,0x10,0x10,0x10,0x10,0x10,0x00,0x00}, // -

 {0x00,0x00,0x06,0x06,0x00,0x00,0x00,0x00}, // .

 {0x06,0x0c,0x18,0x30,0x60,0xc0,0x80,0x00}, // /

 {0x7c,0xfe,0x9a,0xb2,0xfe,0x7c,0x00,0x00}, // 0

 {0x42,0x42,0xfe,0xfe,0x02,0x02,0x00,0x00}, // 1

 {0x46,0xce,0x9a,0x92,0xf6,0x66,0x00,0x00}, // 2

 {0x44,0xc6,0x92,0x92,0xfe,0x6c,0x00,0x00}, // 3

 {0x18,0x38,0x68,0xc8,0xfe,0xfe,0x08,0x00}, // 4

 {0xe4,0xe6,0xa2,0xa2,0xbe,0x9c,0x00,0x00}, // 5

 {0x3c,0x7e,0xd2,0x92,0x9e,0x0c,0x00,0x00}, // 6

 {0xc0,0xc6,0x8e,0x98,0xf0,0xe0,0x00,0x00}, // 7

 {0x6c,0xfe,0x92,0x92,0xfe,0x6c,0x00,0x00}, // 8

 {0x60,0xf2,0x92,0x96,0xfc,0x78,0x00,0x00}, // 9

 {0x00,0x00,0x36,0x36,0x00,0x00,0x00,0x00}, // :

 {0x00,0x05,0x37,0x36,0x00,0x00,0x00,0x00}, // ;

 {0x10,0x38,0x6c,0xc6,0x82,0x00,0x00,0x00}, // <

 {0x28,0x28,0x28,0x28,0x28,0x28,0x00,0x00}, // =

 {0x00,0x82,0xc6,0x6c,0x38,0x10,0x00,0x00}, // >

 {0x40,0xc0,0x8a,0x9a,0xf0,0x60,0x00,0x00}, // ?

 {0x7c,0xfe,0x82,0xba,0xba,0xf8,0x78,0x00}, // @

 {0x3e,0x7e,0xc8,0xc8,0x7e,0x3e,0x00,0x00}, // A

 {0x82,0xfe,0xfe,0x92,0x92,0xfe,0x6c,0x00}, // B

 {0x38,0x7c,0xc6,0x82,0x82,0xc6,0x44,0x00}, // C

 {0x82,0xfe,0xfe,0x82,0xc6,0xfe,0x38,0x00}, // D

 {0x82,0xfe,0xfe,0x92,0xba,0x82,0xc6,0x00}, // E

 {0x82,0xfe,0xfe,0x92,0xb8,0x80,0xc0,0x00}, // F

 {0x38,0x7c,0xc6,0x82,0x8a,0xce,0x4e,0x00}, // G

 {0xfe,0xfe,0x10,0x10,0xfe,0xfe,0x00,0x00}, // H

 {0x00,0x82,0xfe,0xfe,0x82,0x00,0x00,0x00}, // I

 {0x0c,0x0e,0x02,0x82,0xfe,0xfc,0x80,0x00}, // J

 {0x82,0xfe,0xfe,0x10,0x38,0xee,0xc6,0x00}, // K

 {0x82,0xfe,0xfe,0x82,0x02,0x06,0x0e,0x00}, // L

 {0xfe,0xfe,0x60,0x30,0x60,0xfe,0xfe,0x00}, // M

 {0xfe,0xfe,0x60,0x30,0x18,0xfe,0xfe,0x00}, // N

 {0x38,0x7c,0xc6,0x82,0xc6,0x7c,0x38,0x00}, // O

 {0x82,0xfe,0xfe,0x92,0x90,0xf0,0x60,0x00}, // P

 {0x78,0xfc,0x84,0x8e,0xfe,0x7a,0x00,0x00}, // Q

 {0x82,0xfe,0xfe,0x98,0x9c,0xf6,0x62,0x00}, // R

 {0x64,0xe6,0xb2,0x9a,0xde,0x4c,0x00,0x00}, // S

 {0xc0,0x82,0xfe,0xfe,0x82,0xc0,0x00,0x00}, // T

 {0xfe,0xfe,0x02,0x02,0xfe,0xfe,0x00,0x00}, // U

this had rather bold character maps that were good to read from a distance.
This is the entire bitmap for 96 characters, 8 bytes for each character. The array is two dimensional with 96 rows and 8
columns. The first character is ‘space’ which is character 32 on ASCII table. The table therefore is offset by 32 from
the ASCII codes of the characters. Thus if the character that we want to display can be located in the map at ASCII
value of the character - 32. So letter A has ASCII code of 65, its map will be found at 65 - 32 = 33th element of the
fonts array in its rows dimension. Displaying 8 characters from font[33][] will give us character A.
So now make another file named font.h and copy this entire code in it. We will include this file in our text processing
API library. This bitmap has been mapped as columns, therefore characters would appear rotated.

 {0xf8,0xfc,0x06,0x06,0xfc,0xf8,0x00,0x00}, // V

 {0xfe,0xfe,0x0c,0x18,0x0c,0xfe,0xfe,0x00}, // W

 {0xc6,0xee,0x38,0x10,0x38,0xee,0xc6,0x00}, // X

 {0xe0,0xf2,0x1e,0x1e,0xf2,0xe0,0x00,0x00}, // Y

 {0xe6,0xce,0x9a,0xb2,0xe2,0xc6,0x8e,0x00}, // Z

 {0x00,0xfe,0xfe,0x82,0x82,0x00,0x00,0x00}, // [

 {0x80,0xc0,0x60,0x30,0x18,0x0c,0x06,0x00}, // "\"

 {0x00,0x82,0x82,0xfe,0xfe,0x00,0x00,0x00}, //]

 {0x10,0x30,0x60,0xc0,0x60,0x30,0x10,0x00}, // ^

 {0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01}, // _

 {0x00,0x00,0xc0,0xe0,0x20,0x00,0x00,0x00}, // `

 {0x04,0x2e,0x2a,0x2a,0x3c,0x1e,0x02,0x00}, // a

 {0x82,0xfc,0xfe,0x22,0x22,0x3e,0x1c,0x00}, // b

 {0x1c,0x3e,0x22,0x22,0x36,0x14,0x00,0x00}, // c

 {0x0c,0x1e,0x12,0x92,0xfc,0xfe,0x02,0x00}, // d

 {0x1c,0x3e,0x2a,0x2a,0x3a,0x18,0x00,0x00}, // e

 {0x12,0x7e,0xfe,0x92,0xc0,0x40,0x00,0x00}, // f

 {0x19,0x3d,0x25,0x25,0x1f,0x3e,0x20,0x00}, // g

 {0x82,0xfe,0xfe,0x10,0x20,0x3e,0x1e,0x00}, // h

 {0x00,0x22,0xbe,0xbe,0x02,0x00,0x00,0x00}, // i

 {0x02,0x23,0x21,0xbf,0xbe,0x00,0x00,0x00}, // j

 {0x82,0xfe,0xfe,0x08,0x1c,0x36,0x22,0x00}, // k

 {0x00,0x82,0xfe,0xfe,0x02,0x00,0x00,0x00}, // l

 {0x3e,0x3e,0x30,0x18,0x30,0x3e,0x1e,0x00}, // m

 {0x3e,0x3e,0x20,0x20,0x3e,0x1e,0x00,0x00}, // n

 {0x1c,0x3e,0x22,0x22,0x3e,0x1c,0x00,0x00}, // o

 {0x21,0x3f,0x1f,0x25,0x24,0x3c,0x18,0x00}, // p

 {0x18,0x3c,0x24,0x25,0x1f,0x3f,0x21,0x00}, // q

 {0x22,0x3e,0x1e,0x22,0x38,0x18,0x00,0x00}, // r

 {0x12,0x3a,0x2a,0x2a,0x2e,0x24,0x00,0x00}, // s

 {0x00,0x20,0x7c,0xfe,0x22,0x24,0x00,0x00}, // t

 {0x3c,0x3e,0x02,0x02,0x3c,0x3e,0x02,0x00}, // u

 {0x38,0x3c,0x06,0x06,0x3c,0x38,0x00,0x00}, // v

 {0x3c,0x3e,0x06,0x0c,0x06,0x3e,0x3c,0x00}, // w

 {0x22,0x36,0x1c,0x08,0x1c,0x36,0x22,0x00}, // x

 {0x39,0x3d,0x05,0x05,0x3f,0x3e,0x00,0x00}, // y

 {0x32,0x26,0x2e,0x3a,0x32,0x26,0x00,0x00}, // z

 {0x10,0x10,0x7c,0xee,0x82,0x82,0x00,0x00}, // {

 {0x00,0x00,0x00,0xee,0xee,0x00,0x00,0x00}, // |

 {0x82,0x82,0xee,0x7c,0x10,0x10,0x00,0x00}, // }

 {0x40,0xc0,0x80,0xc0,0x40,0xc0,0x80,0x00}, // ~

 {0x1e,0x3e,0x62,0xc2,0x62,0x3e,0x1e,0x00}, //

};

// 8x8 Bicolor LED Matrix Display

#include "Matrix.h"

#include "font.h"

extern unsigned char mat_r[];

sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

 Lets attempt to use the bitmap table, to display any character of our choice. In this program we have removed the font
[] array and included the font.h file, that has the necessary font bitmap table. In our main program we have a character
type variable named ch, and we have assigned it a character, lets say ‘N’. No-
tice the character N is enclosed within single quotes. Single quotes in C mean
a single character, whereas double quotes like “N” would mean a string which
is different structure. So when we say ch=‘N’ it has stored the ASCII value of
N that is 78. to access its bitmap in table we subtract 32 from the 78 and this
points us to exact location in our font table where bitmap image of letter N is
starting. From here we access next 8 bytes and stuff them in our video mem-
ory and we get the letter N displayed. You can try with other characters like
‘1’, ‘9’, ‘*’, ‘&’ etc and you will get the appropriate display every time. How-
ever the letters are rotated. Now we are going to explore how to display the
characters in correct orientation. There are two ways, either we rotate our dis-
play, which is not a good option, or to get a character map where rows have
been mapped instead of columns; this is again a daunting task. Lets find some
software solution to rotate the bitmap while displaying using the same bitmap
table.

Rotating the bitmap by 90 degrees
In order to rotate the horizontal bitmap image by 90 degrees, we have to transfer the bits from horizontal map into
vertical positions one by one. This will be done for all 8 bytes in the bitmap to all 8 bytes in the video memory.

sbit Tris_Mat_LAT at TRISC.B2;

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

void main() {

short x;

unsigned char ch;

Init_matrix(); // Initialize matrix function, to setup inter-

rupts

cls(black);

ch='N';

for(x=0;x<8;x++) {

 mat_r[x]=font[ch-32][x];

 }

}

// 8x8 Bicolor LED Matrix Display

#include "Matrix.h"

#include "font.h"

extern unsigned char mat_r[];

sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

sbit Tris_Mat_LAT at TRISC.B2;

char TestBit(unsigned char x, short i) {

 return ((x >> i) & 1);

}

In this code we have made a new function named TestBit() that will accept a byte data and an
index to the bit that we want to test if its 1 or 0. because accordingly we have to set the bits in the
column. The code has simply gone through each byte of the bitmap, tested each bit if its 1 or 0 and
set the corresponding column bits as red color or black (for OFF) and you can see the result, the
letter ‘N’ appears in normal orientation.

Characters and Strings
Now that we can display individual character in correct orientation, lets give a brief talk to the

strings, which are the standard method of sending textual data to any device. Strings are essentially
alphanumeric characters, grouped together to make one data type. The strings are stored internally
as an array of characters. One thing special about strings is that their length is not fixed. It can be a
single character, or it can have 100 characters. The strings are stored internally as an array, with a
special character at the end of data. This special character is binary 0 in the last byte. This is also
represented in C as ‘\0’. Essentially this is a single byte containing 0 in it. Remember character ‘0’
and binary 0 are different.

Thus if we have a string “PAKISTAN” it has 8 characters it will be represented in memory as
an array of 9 bytes, first 8 bytes will have ASCII codes for the data characters and last byte will
have ‘\0’ to indicate end of string.

In order to display string data on our display we need to scan the string array one character at a
time, display it and then proceed to next one till we encounter ‘\0’.

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

void main() {

short x,i;

unsigned char ch;

Init_matrix(); // Initialize matrix function, to setup inter-

rupts

cls(black);

ch='N';

for(i=0;i<8;i++)

 {

 for(x=0;x<8;x++) {

 if(Testbit(font[ch-32][i],7-x))

 pset(x,i,red);

 else

 pset(x,i,black);

 }

 }

}

// 8x8 Bicolor LED Matrix Display

#include "Matrix.h"

#include "font.h"

extern unsigned char mat_r[];

sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

 In this program we have defined a character typed array named message[] and put a string
data , “PAKISTAN” in it. Notice the data is enclosed in double quotes. Compiler automatically
appends a ‘\0’ at the end of string. In program we have defined a variable y, to track the characters
in string, and put a loop that iterates through the message string one byte at a time, displays it,
waits for 2 seconds and then advances y to get next character. This action is repeated till we en-
counter ‘\0’ in the message string.

I think now we have covered all the basics of text display on our display, and you understand
how to manipulate data. Now you can get any text data formatted in the form of a string and dis-

sbit Tris_Mat_LAT at TRISC.B2;

char TestBit(unsigned char x, short i) {

 return ((x >> i) & 1);

}

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

void main() {

short x,i,y;

char ch;

char message[]="PAKISTAN";

Init_matrix(); // Initialize matrix function, to setup interrupts

cls(black);

y=0;

do {

ch=message[y];

for(i=0;i<8;i++)

 {

 for(x=0;x<8;x++) {

 if(Testbit(font[ch-32][i],7-x))

 pset(x,i,red);

 else

 pset(x,i,black);

 }

 }

 delay_ms(2000);

 y++;

 } while(message[y] != '\0');

}

play it on the matrix. If you combine some sort of communication between your controller and PC,
like serial, USB or Ethernet you can easily write applications that will get the string data from
internet and update the display.

Now is the time to write our appropriate API library to display text data, using this background
knowledge, so that our user does not need to go through all this in his projects. In your source files
create a file named “text.c”; this file will contain the API functions to manipulate text, just like our
graphics.c manipulated graphics. Text.c will use some functions defined in graphics.c to draw the
pixels.

The first function that is to be internally used is the Testbit, as we have seen it previously to test
if a bit is high or low. This will be used to rotate the character map.

Note this function has type char, unlike many other functions that are typed void. This is be-
cause this function will accept a character data, which will be one byte long, and an integer value
which indicates the bit we want to test. This value will be between 0 and 7. the function will apply
the bit test on appropriate bit and return a character 1 if the bit is already on, and a 0 if the bit is
off.

Next logical function to manipulate text will be to display one character. The function will ac-
cept the ACSII code of the character and fetch its bitmap from the font array, rotate the map and
display character on display.

The parameter y indicates the column number on matrix from where matrix should be dis-
played, this will allow us to position the character anywhere on display. The clr and backclr are the
color names for the character as well as the color of pixels that are supposed to be off. This will
effectively make a background color and allow us to display text on any background. The code
does not need discussion as we have previously discussed the logic behind, just to recap you, we
subtract 32 from the ASCII code of character to get the index value in our bitmap. Then as we did
previously extract each bit from the bitmap and set on the appropriate column. Please make sure
you write the functions prototype definitions in matrix.h file.

So far so good, now most of the times the strings are larger than display width, no matter how
long you make a display, its always a good idea to scroll the text. For simplicity we ware dealing
with English characters only therefore they need to slide in from right and shift leftwards slowly.

char TestBit(unsigned char x, short i) {

 return ((x >> i) & 1);

}

void show_character(short y,char c,unsigned char clr,unsigned char backclr) {

 char ch;

 short i;

 short x;

 ch=c-32;

 for(i=0;i<8;i++)

 {

 for(x=0;x<8;x++) {

 if(Testbit(font[ch][i],7-x))

 pset(x,i+y,clr);

 else

 pset(x,i+y,backclr);

 }

 }

}

Our next function is to slide a single character one column at a time from right and slide in to
left.

This function draws the character one column at a time on right most column of display, the
same way as we did to display the character. After every column draw we scroll the display to left
by one column and then repeat the same process with next column bitmap. This will give an ani-
mated effect of scrolling a character.

Naturally next target will be to scroll an entire string. After the above function scrolling the en-
tire string becomes fairly easy, as we just need to extract one character at a time from the string
and send it for scrolling.

Now calling the scroll text function API from our main program to see the entire library work-
ing.

// slide in a character from right side and shift leftwards

void slide_L(char c, unsigned char clr, unsigned speed, unsigned char backclr)

{

 char ch;

 short i;

 short x;

 ch=c-32;

 for(i=0;i<8;i++)

 {

 for(x=0;x<8;x++) {

 if(Testbit(font[ch][i],7-x))

 pset(x,7,clr);

 else

 pset(x,7,backclr);

 }

 scroll_left(1,speed);

 }

}

// scroll an entire string

void Scroll_text(unsigned char * str, unsigned char clr, unsigned

speed,unsigned char backclr) {

 short y=0;

 do {

 Slide_L(str[y],clr,speed,backclr);

 y++;

 } while (str[y] != '\0') ;

}

void main() {

Init_matrix(); // Initialize matrix function, to setup interrupts

while(1){

 Scroll_text("WELCOME ",red,100,black);

}

}

We had previously made functions not only to scroll left but to scroll up, right and down as
well, just a demo of a character being scrolled up.

This code will display a character ‘A’ on screen and scroll the character up by 8 rows giving an
animated effect of moving the letter A upwards. You can easily make symbols or graphics like up
arrow or down arrow and scroll them to show the same application as we find in elevators.

 Here is a rather longish demo to show you most of the features of your library. Now you can
expand this library your way, use it in your applications and have fun. Using this library you can
make simple animations, games, text message displays and lot more. Make sure you have defined
the function prototypes in the matrix.h file.

void main() {

Init_matrix(); // Initialize matrix function, to setup interrupts

while(1){

show_character(1,'A',green,black);

scroll_up(8,50);

}

void main() {

short x,y,i;

Init_matrix(); // Initialize matrix function, to setup interrupts

 while(1) {

 cls(black);

 Show_character(1,'A',red,black);scroll_up(8,100);

 Show_character(1,'A',red,black);scroll_down(8,100);

 Show_character(1,'A',red,black);scroll_right(8,100);

 Show_character(1,'A',red,black);scroll_left(8,100);

 cls(black);

 Scroll_text("MICROTRONICS ",green,75,black);

 Scroll_text("PAKISTAN ",red,50,green);

 Scroll_text("LED ", orange,50, black);

 cls(black);

 for(x=0;x<8;x++){

 for(y=0;y<8;y++) {

 pset(y,x,((x+y*2) % 3)+1); delay_ms(20);

 }

 }

 delay_ms(1000);

 cls(black);

 for(i=0;i<4;i++) {

 rect(i,i,7-i,7-i,(i%3)+1,black);

 delay_ms(100);

 }

 }

}

W
hen you are finished developing your application software, and you want to dis-
tribute it to others so that they can use the functionality in their applications, its
time to learn how to make distributable binaries. As far as your own in-house
development is concerned, many companies and individuals develop their own

libraries and use them in their applications, in this case a source level inclusion in your projects
and recompiling the entire application is not a bad idea. When it comes to commercial redistribu-
tion or sharing with colleagues, you don't want to expose the source code. You therefore distribute
your work as compiled binaries that can be called in the application program. The calling program
only needs to know the format of functions and procedures you have made, and the kind of pa-
rameters it needs.

Almost all compilers allow you to make redistributable binary files. In terms of compilers we
call them ‘Object files’. This is because in classical days of PC programming the compilers used to
produce an intermediate file having an .obj extension. This may or may not be the case with your

particular compiler, so you need to read its documentation in order to find the output files of com-

Making Distributable Binaries

piler. A look at the source folder where we are compiling all our applications, shows a number of
files generated by the compiler for each source .c file. As an example for the graphics.c file it has
generated an .asm file which is the assembly language code that will be used by assembler, to cre-
ate the object file. In MikroC the object file has an extension .mcl, therefore graphics.mcl is the
object file generated by compiler and assembler as the final binary containing your code.

Opening this file in a text editor shows it has strange structure, something that can not make
sense straight away to a programmer. This is because the source commands have been converted
into binary equivalents.

Depending upon the structure of your library you may have one or more than one .mcl files, one
for each source file. In our case we need graphics.mcl, mat_driver.mcl and text.mcl to be distrib-
uted. These files will not be compiled again, so you don't need matrix.h and font.h files. However
in order to use the functions in our main program we need to declare the prototypes, therefore it
will be good to distribute the matrix.h with your package.

Now lets make a new project in a new folder, and copy these files into it and see how to use the
libraries as compiled files without need of source files. We made a new projct named welcome in a
separate folder named welcome,
and created a folder named
‘Library’ in it.

There is no compulsion to
name the folder as library, you
can choose any name. In this
folder we copy the distributable
binary files, ready to be used in
the main program.

Notice we have not included the font.h file as it has the constant bitmap that is already com-
piled into text.mcl file.

Next we need our project to
know the location of these binary
files. In the project explorer
panel, notice a node named
‘Binaries’ which at present has no
files, right click over it and in the
dialog box select ‘Add New
Files’. A file dialog box will ap-
pear locate the Library folder and
include the graphics.mcl,
mat_driver.mcl and text.mcl files.

Similarly add the matrix.h file in the includes folder. That all we are done, now lets turn our
attention to the main program, as per requirements of our library we have to define the public sym-
bols and the connections to our microcontroller. Make an interrupt handler function, and call the

matrix.setup function. This is all the same we have been doing in our main program throughout
this book while testing the library.

The program compiled successfully as shown in previous image, without need of the source
files. You will have to write the documentation for the library to help the user, how to call the vari-
ous functions and what parameters are expected. You can also keep the Library files in a common
location and include in your project as binaries from that common location, as on a network server.
Now in any project that needs to implement your matrix display as part of it, users can just include
the binary files and use them.

Extending Library Files
 The library features we have included in this demonstration may not be perfect or enough. You

as programmer and owner of the source code can certainly add more stuff, from time to time and
release various versions of binaries. The end user can also make their own libraries with new fea-
tures using the existing commands of your library. Just like you do using the commands provided
by Mikroelectronica as part of MikroC.

Including The Library in MikroC Permanently
In case you or some of your clients routinely work with your library, you would like to add a

reference of this library in your MikroC or other Mikroelectronica products like MikroBasic instal-
lation. Just like we have the pre-installed libraries from Mikroelectronica. For this you will have to
include the .mcl files in a common folder in the compiler installation and then write some xml file
to describe the libraries. On top of that Mikroelectronica have a mechanism to allow only particu-
lar controller projects to have access to certain libraries. This becomes more valid in case your li-
brary is using some special modules that only certain controllers have. Like if your library needs to
use USART, for some communication, not all microcontrollers have hardware USART in them, so
it will be pointless to use the library with those controllers. You will have to make an xml file for
each controller that an support this library. This is a daunting task, and including bare binaries di-
rectly in your project is much more convenient than to go through this entire exercise. The Mik-
roelectronica help in your compiler gives details about this procedure.

#include "Matrix.h"

extern unsigned char mat_r[];

sbit Mat_DS at PORTC.B0;

sbit Mat_CLK at PORTC.B1;

sbit Mat_LAT at PORTC.B2;

sbit Tris_Mat_DS at TRISC.B0;

sbit Tris_Mat_CLK at TRISC.B1;

sbit Tris_Mat_LAT at TRISC.B2;

void interrupt() {

 if(TMR0IF_bit) // check if interrupt on timer 0

 update_Matrix(); // call update display function

}

void main() {

 Init_matrix(); // Initialize matrix function, to setup interrupts

 cls(black);

 while(1){

 Scroll_text("hello World",green, 100,black);

 }

}

Fortunately folks at Mikroelectronica have realized the importance of this issue and they have
created a small tool that will make a library for you, and using that tool you and your users can
install the library into their MikroC installation.

This is called ‘Packaging tool’ and can be downloaded free from mikroe.com the packaging
tool will allow you to pack the library files, associated help files and example files all in a single re
-distributable package. Lets see this tool in action. Download and install the latest version of pack-

age manager from Mikroe.com after installation, which is a straight forward process, start the
package manager. Remember this product is standalone and does not integrate with MikroC.

Now click on the greeting screen to “Create a new package” in the next screen fill relevant in-
formation.

Now in the project tree right click over the libraries node and click “Add a New Library”. This
will have three nodes, the dependency node gives you an entire list of controllers supported by the
compiler, you can select the controllers for which your library is supported. You can elect all if

you want but then installation will take a long time, as it will have to adjust libraries for every con-
troller you have selected. Next click over the main library file select one object file that is going to
be the main library file, and in other files add other supporting files having functions internally
used by the main library. We have three separate libraries so we make three library nodes.

Now you can add the help files and example files as well, help files can be PDF or they should
be .hlp files as per windows help system. I leave this section away as truly speaking I have not yet
written the help files for this library as yet, but surely you will do it before giving away the pack-
age, so that users can find help and support. Just for the purpose of demonstrating I have included
a dummy PDF file. And also an examples folder. Now save the package, in a new folder, lets name
it package. The package will be saved as 8x8 Bicolor.mpkg file. This file contains all the defini-
tions necessary for installation. Just distribute this file, the user will download the package man-
ager to install this file.

Lets give it a try. Close the package manager, and run it again, this time in welcome screen se-
lect “Open Existing Package”, now browse to the package file you have just created and open it.

This should open the package file with all the settings as you had given, now click over the
Green button on top, called install package, this will extract the package and install it on your in-
stallation of MikroC for every controller you had selected.

If you have already installed the package you can uninstall it by pressing the uninstall button,
otherwise just click the green button and it should install the libraries.

Now is the time to see if this works. I had made the package file for PIC18F2550 only, so our
library will appear only in projects with this controller, of-course you will make the package file
for more controllers in mind so that the library is useful for a large number of controllers.

Notice now in our new project, based upon PIC18F2550 the library is available just like Mik-

roE libraries, and you do not need to include the matrix.h file as well, however in matrix.h we had
defined the colors as enumeration type, if you want to use the color names, then write an enumera-
tion on top of the file, otherwise you can use 0,1,2 and 3 for black, red, green etc. double clicking
the library items will open the help file that you have attached.

Mat_driver.c

Appendix

Complete Library Source Code

#include "matrix.h"

// Microtronics Pakistan

// Amer Iqbal

// ameriqbalqureshi@yahoo.com

// 8x8 Bicolor LED matrix display driver

// SPI Mode Data, Clock , Latch

// Three Bytes : Row Select, Green, Red

// red is least byte

// mat_row, mat_g and mat_r are reserved global arrays these names can not be

used in anyother part

// This is the lowest level driver to send the shadow arrays to led matrix over

SPI interface, but does not use the SPI

// Module, so that even simplest controllers can implement it.

// Connections of the matrix display to Digital I-O lines. These reserved words

must be declared in program

extern sfr sbit Mat_DS;

extern sfr sbit Mat_CLK;

extern sfr sbit Mat_LAT;

extern sfr sbit Tris_Mat_DS;

extern sfr sbit Tris_Mat_CLK;

extern sfr sbit Tris_Mat_LAT;

unsigned char mat_row[8]={1,2,4, 8,16,32,64,128 }; // selecting the row by

index mat_i

unsigned char mat_i=0;

unsigned char mat_r[8]={0,0,0,0,0,0,0,0}; // 8x8 64 bit array for holding red

matrix pattren

unsigned char mat_g[8]={0,0,0,0,0,0,0,0}; // 8 x 8 64 bit array for holding

green matrix pattren

// Initialize the matrix, set Tris registers, and setup the interrupt system on

Timer 0

void Init_Matrix() {

 Tris_Mat_DS=0;

 Tris_Mat_CLK=0;

 Tris_Mat_LAT=0;

 Mat_DS=0; Mat_CLK=0; Mat_LAT=0;

 // setup interrupt on timer 0 2ms ineterrupt

 T0CON = 0x88;

 TMR0H = 0xA2;

 TMR0L = 0x40;

 GIE_bit = 1;

 TMR0IE_bit = 1;

}

// Shift out the data to three shift registers

 // the active column is 0 on shift registers whereas it is 1 in our array
// therefore the values are inverted first before shofting out

void Shout(unsigned char row, unsigned char green, unsigned char red) {

 short j;

 green = ~green; // invert bits because led is on when bit is 0 (sink)

 red=~red;

 for(j=0;j<8;j++) // Shift out red First

 {

 Mat_DS= red & 1 ; // test least significant bit if its 1

 Mat_CLK=1;Mat_CLK=0; // clock

 red=red >> 1; // shift bits to right by 1 to get next bit

 }

 for(j=0;j<8;j++) // Shift Out Green

 {

 Mat_DS= green & 1 ; // test least significant bit if its 1

 Mat_CLK=1;Mat_CLK=0; // clock

 green=green >> 1; // shift bits to right by 1 to get next bit

 }

// The row bits are 1 to select a row, therefore they dont need to be inverted

 for(j=0;j<8;j++) // Shift Out Row select

 {

 Mat_DS= row & 1 ; // test least significant bit if its 1

 Mat_CLK=1;Mat_CLK=0; // clock

 row=row >> 1; // shift bits to right by 1 to get next bit

 }

 Mat_LAT=1;Mat_LAT=0; // Clock Latch to appear data.

}

// called every 2ms from the interrupt and shifts out one row of red and green

matrix array

// increments the row index mat_i

void update_matrix(){

 TMR0IF_bit = 0; // reset timer values, calculated for 48MHz

 TMR0H = 0xA2;

 TMR0L = 0x40;

 Shout(mat_row[mat_i],mat_g[mat_i],mat_r[mat_i]);

 mat_i++;

 if(mat_i==8)

 mat_i=0;

}

// Basic function to fill the Video RAM with pattrens of red and green

void fill(unsigned char r,unsigned char g) {

 short i;

 for(i=0;i<8;i++){

 mat_r[i]=r;

 mat_g[i]=g;

 }

}

// scroll the video memory to left by x positions

void scroll_left(short x,short speed){

 short i,p;

 for(p=0;p<x;p++) {

 vdelay_ms(speed);

 for (i=0;i<8;i++) {

 mat_r[i]=mat_r[i] >> 1;

 mat_g[i]=mat_g[i] >> 1;

 }

 }

}

void scroll_right(short x, short speed){

 short i,p;

 for(p=0;p<x;p++) {

 vdelay_ms(speed);

 for (i=0;i<8;i++) {

 mat_r[i]=mat_r[i] << 1;

 mat_g[i]=mat_g[i] << 1;

 }

 }

}

void scroll_up(short y,short speed) {

 short i,p;

 for(p=0;p<y;p++) {

 vdelay_ms(speed);

 for(i=0;i<7;i++) {

 mat_r[i]=mat_r[i+1];

 mat_g[i]=mat_g[i+1];

 }

 mat_r[7]=0;

 mat_g[7]=0;

 }

}

void scroll_down(short y,short speed) {

 short i,p;

 for(p=0;p<y;p++) {

 vdelay_ms(speed);

 for(i=7;i>0;i--) {

 mat_r[i]=mat_r[i-1];

 mat_g[i]=mat_g[i-1];

 }

 mat_r[0]=0;

 mat_g[0]=0;

 }

}

Graphics.c

#include "Matrix.h"

// Graphics Library for 8x8 matrix display

extern unsigned char mat_r[];

extern unsigned char mat_g[];

// Sets the pixel of column and row to color specified

void pset(short row,short col, short clr) {

 switch (clr) {

 case red: mat_r[row]=mat_r[row] | (1 << col); // set red

 Mat_g[row]=Mat_g[row] & ~(1 << col);// clear green

 break;

 case green: mat_g[row]=mat_g[row] | (1 << col); // set green

 Mat_r[row]=Mat_r[row] & ~(1 << col); // clear red

 break;

 case orange:

 mat_r[row]=mat_r[row] | (1 << col);

 mat_g[row]=mat_g[row] | (1 << col);

 break;

 case black:

 Mat_r[row]=Mat_r[row] & ~(1 << col);

 Mat_g[row]=Mat_g[row] & ~(1 << col);

 break;

 }

}

// Draw a horizontal line on a given row from col1 to col2

void hline(short row, short col1, short col2, short clr) {

 short x;

 for(x=col1;x<=col2;x++) {

 pset(row,x,clr);

 }

}

// Draw a verticle line on a given column from row1 to row2

void vline(short col, short row1, short row2, short clr) {

 short x;

 for(x=row1;x<=row2;x++) {

 pset(x,col,clr);

 }

}

// Draw a rectangle between two coordinates with border color and fills the

rectangle with a fill color

void rect(short row1, short col1, short row2, short col2, short clr, short

fill_clr) {

short x,y;

 hline(row1,col1,col2,clr);

 hline(row2,col1,col2,clr);

 vline(col1,row1,row2,clr);

 vline(col2,row1,row2,clr);

 for(y=row1+1;y<row2;y++){

 for(x=col1+1;x<col2;x++) {

 pset(y,x,fill_clr);

 }

 }

}

// Clear screen and fill the entire screen with a clr

void cls(short clr) {

 switch (clr) {

 case black: fill(0,0);break;

 case red: fill(255,0);break;

 case green: fill(0,255);break;

 case orange: fill(255,255);break;

 }

}

// get status of a pixel

char pget(char x,char y) {

 if(((Mat_r[y] >> x) & 1) && ((mat_g[y]>>x) &1))

 return orange;

 if((Mat_r[y] >> x) & 1)

 return red;

 if((Mat_g[y] >> x) & 1)

 return green;

return black;

}

Text.c

#include "font.h"

#include "matrix.h"

// function to test a bit if its 1 or 0

char TestBit(unsigned char x, short i) {

 return ((x >> i) & 1);

}

// display a character c with forecolor clr and backcolor

void show_character(short y,char c,unsigned char clr,unsigned char backclr) {

 char ch;

 short i;

 short x;

 ch=c-32;

 for(i=0;i<8;i++)

 {

 for(x=0;x<8;x++) {

 if(Testbit(font[ch][i],7-x))

 pset(x,i+y,clr);

 else

 pset(x,i+y,backclr);

 }

 }

}

// slide in a character from right side and shift leftwoards

void slide_L(char c, unsigned char clr, unsigned speed, unsigned char backclr)

{

 char ch;

 short i;

 short x;

 ch=c-32;

 for(i=0;i<8;i++)

 {

 for(x=0;x<8;x++) {

 if(Testbit(font[ch][i],7-x))

 pset(x,7,clr);

 else

 pset(x,7,backclr);

 }

 scroll_left(1,speed);

 }

}

 // scroll an entire string

void Scroll_text(unsigned char * str, unsigned char clr, unsigned

speed,unsigned char backclr) {

 short y=0;

 do {

 Slide_L(str[y],clr,speed,backclr);

 y++;

 } while (str[y] != '\0') ;

}

