

A Real Time Clock (RTC) is a timing element dedicated for keeping time. In many applications,

especially where precise timed-operations are needed to be performed, a RTC is a very useful tool.

Examples of such applications apart from clocks and watches include washing machines, medicine

dispensers, data loggers, etc. Basically a RTC is a timer-counter but unlike other timers of a MCU it is

much more accurate. Previous to this post, we explored STM32 timers but those were useful for

applications like PWM generation, time-bases and other waveform-related tasks. Those were not

suitable for precise time-keeping. In most 8-bit MCUs like the regular PICs and AVRs, there are no

built-in RTC modules and so we need to use dedicated RTC chips like the popular DS1302 or PCF8563

when we need an on-board precise time-keeping device. Those chips also need some additional

circuitry, wiring and circuit board space. At present, however, most modern MCUs come packed with

literally every possible hardware a designer may think of. It is only up to a designer to decide which

resources to use from a modern-era micro to meet a specific design goal. Gone are the days when

MCUs were manufactured for application specific requirements and also gone are the days of

implementing and involving multiple assets in a design. Thus cost, time and space are dramatically

reduced, resulting smarter, sleeker and smaller affordable devices. Fortunately STM32s are in that list

of those modern era microcontrollers. STM32 MCUs come with built-in RTC modules that require no

additional hardware support.

Feature of STM32 RTC Block

The embedded RTC of a STM32 micro is an independent binary-coded-decimal (BCD) timer counter.

The RTC core consists of counters, prescalers, clock dividers, alarm data registers, etc. Like with any

standard RTC chip, the embedded RTC can be used to provide a full-featured software-based calendar

along with alarm functions. However more needs to be done on the software end rather than the

hardware end. When using RTC chips, it is only required to read or write individual date-time registers.

In a STM32 micro, we need to do more than that as no separate date-time registers exist.

Resetting or waking up the MCU from a sleep/standby mode does not reinitializes time once set. It

gets even better if there is a battery backup on battery backup (VBAT) pin. All VDDs of a STM32 can

be turned off or in other words the entire MCU core can be fully shut down but the battery backup

keeps the RTC and the backup domain running. Thus time is not varied or lost during powered down

and sleep modes. Key features of the STM32 embedded RTC are highlighted below:

• Programmable prescaler: division factor up to 220.

• 32-bit programmable counter for long-term measurement

• Two separate clocks: PCLK1 for the APB1 interface and RTC clock.

• The RTC clock source could be any of the following ones

 HSE clock divided by 128.
 LSE oscillator clock.
 LSI oscillator clock.

• Two separate reset types:

 The APB1 interface is reset by system reset.
 The RTC core is reset only by a Backup domain reset.

• Three dedicated maskable interrupt lines:

 Alarm interrupt, for generating a software programmable alarm interrupt.
 Seconds interrupt, for generating a periodic interrupt signal with a programmable period

length (up to 1 second).
 Overflow interrupt, to detect when the internal programmable counter rolls over to zero.

Functional Description

Shown below is the block diagram of the embedded RTC for a typical STM32F10x microcontroller.

The RTC comprises of two major components. The first is the APB1 bus interface. The APB1 bus

interface consists of clock dividers and is used to connect with APB1 bus. This interface also consists

of a set of 16-bit registers that can be read/written by APB1 bus operations.

The other component is the RTC core. It consists of a group of programmable counters divided into

two modules. The first module is the RTC prescaler module. This module generates a programmable

time base of one second (TR_CLK) by using a 20-bit programmable divider. The other module is a 32-

bit wide programmable counter that is used to keep counts of seconds. Since it is 32-bit wide, with a

TR_CLK period of one second, it can record up to 4,294,967,296 seconds or roughly a century – a

pretty big time for any machine or a human lifetime.

There are registers for alarms which work in a similar manner as compare match interrupt in a timer.

Whatever stored in the alarm registers is compared with the values in the counter registers. An alarm

event occurs when both register sets have the same value.

The RTC core is totally independent of the RTC APB1 interface just like the Independent Watchdog

Timer (IWDG). RTC registers, counters, alarms and flags are accessible via APB1 interface but the

counter registers are updated by a separate RTC clock. As illustrated in the block diagram, the RTC

core keeps functioning even if the APB1 bus is unpowered. This is only possible with power supply

backup using a battery or a supercapacitor.

RTC Registers

The good part of RTC registers is the fact that most of them are 16-bit wide while the rest are even
less than a byte wide. There are two RTC control registers which set RTC properties. The rest of the
stuffs are counters and clock dividers. Check the RTC register map below:

The RTC_CRH register is the first control register which is responsible for setting up interrupts related

to the RTC module. There are three types of interrupts and these are alarm, overflow and second

interrupt.

The other control register is the RTC_CRL. This register consists of several flags that trigger on events

like counter overflow, alarm, RTC status, etc.

Then we see the RTC prescaler load registers as RTC_PRLL and RTC_PRLH. Together they are 20-bit

wide. These two registers are used to divide the RTC clock source frequency. These registers are write

protected and special steps are needed to disable this protection. In my example I used an external

32.768 kHz crystal oscillator and so I loaded 32,767 in these registers to get one second. Thus the

formula for getting TR clock (TR_CLK) frequency can be realized as:

𝑓
𝑇𝑅_𝐶𝐿𝐾 =

𝑓𝑅𝑇𝐶𝐿𝐾
(𝑃𝑅𝐿+1)

Next are the RTC divider registers – RTC_DIVL and RTC_DIVH. The purpose of these registers is to

obtain a higher resolution clock than the second count, e.g. 100ms. These are not usually used.

The RTC counter registers – RTC_CNTL and RTC_CNTH are the most important registers as they keep

the count of the seconds or in other words time. These registers are each 16-bit wide. Once set these

registers return current time. Writing these registers is only possible by entering configuration mode.

Finally there are two 16-bit registers dedicated for alarm. RTC_ALRL and RTC_ALRH hold alarm time

data. This set of registers is just like a typical data registers or RAM location. When an alarm is set the

alarm register values are compared with RTC counter register values. An alarm is triggered when the

values in these registers match. Again modification to these registers is only possible in configuration

mode.

Apart from the registers within the RTC block, we also need to deal with the registers of the backup

block. The backup domain of a STM32 MCU is somewhat like an EEPROM memory but it is not

essentially a true EEPROM memory as it needs battery backup on VBAT pin to hold data. The backup

domain consists a total of 42 data registers, each 16-bit wide. These are usually used to retain user

data when a STM32 micro’s main core is powered down or in standby mode. Thus backup data

registers can be realized as battery-backed RAM storages.

Apart from these backup domain registers we will be needing some other registers for additional

functionalities of the backup and the RTC block. Those registers won’t be needing for now and won’t

be discussed here. We’ll be needing the Power Control (PWR) registers for disabling backup domain

write protect scheme. Power control registers will be dealt separately in details in another post.

Just as we configure the main HSE/HSI/ PLL clock, we will be configuring the LSE/LSI clock. We will be

needing to configure some registers of the Reset and Clock Control (RCC) block for this purpose.

RCC_BDCR and RCC_CSR registers will be needed to select RTC clock source and enable low speed (LSI

and LSE) clock sources.

In my version of SPL, I took care of all of these stuffs. We just have to apply them.

Procedure to Configure the RTC Block

 Firstly power up the STM32 micro and initialize other required hardware like LCD, keypad

and other stuffs.

 We already know that right after reset or power on, the backup domain and the RTC are both

disabled. Furthermore the backup registers are kept in a write protected state to avoid any

parasitic write. Thus we need to enable power and backup interfaces by setting PWREN and

BKPEN bits in the reset and clock control APB1 interface enable register (RCC_APB1ENR).

 Next we need to disable the backup register write protection using the DBP bit of PWR_CR

register. When we configure the RTC for the first time, we must reset backup registers and

also important RTC registers like the RTC counter register to avoid any unwanted parasitic

values

 The next thing we need to do is to select the clock source that will be responsible for keeping

time. We will enable it and we should give it some time to stabilize. Of the three possible clock

sources I preferred the external 32.768 kHz crystal oscillator clock (LSE) because it is the usual

procedure. Using LSE clock requires that we use a high quality crystal for accurate timing.

 After every major write operation on RTC registers we must poll if the last write operation is

completed or terminated. This is done by polling RTOFF bit in RTC_CRL register. This is very

important.

 Before configuring the RTC, we need to enter configuration mode by setting CNF flag in

RTC_CRL register. After configuration we need to clear this flag to avoid further changes.

 One major configuration is setting the values of RTC_PRL registers because on their values it

depends how fast or slow the RTC clock runs. Since I used the 32.768 kHz LSE clock PRL

registers are loaded with 32767 to get one second interval interrupt. Why it is this value has

already been explained. We may further calibrate this clock but usually it is not required. If it

is required we can further use the RTC divider registers to acquire a clock of more resolution.

 I have always preferred interrupt methods over polling methods for several reasons and

advantages, and so here to get RTC clock ticks, I used RTC second interrupt. The RTC interrupt

for STM32F10x micros has one interrupt vector address. After an interrupt event we will just

check the interrupt flags and find out which event invoked the interrupt and then clear it.

 To make sure that the RTC is configured only once during the first initialization and not

repeatedly reconfigured after every reset or power down event, we will be storing an arbitrary

value of our choice in a backup data register. I used 0x9999. We will put this value once the

RTC has been completely configured and apply write protection. Since backup data registers

mimic are battery-backed data storages, unless the backup battery is removed the RTC

initialization and working are retained. With this condition, if a reset or power down event

occurs the program restarts from the very beginning and check the backup register value. If

the value is not what has been set after initialization, the RTC is reinitialized or otherwise the

RTC initialization is skipped and only its interrupts are enabled.

Hardware setup

The hardware setup for this example is very simple. For this demo I used a STM32F103C8T6 micro, a

2x16 alphanumerical LCD connected to GPIOB port pins and four push buttons connected to GPIOA

port pins. The buttons are used for setting time. Since I used LSE clock, a 32.768 kHz clock crystal is

connected to PC14 and PC15 pins. I also used an 8MHz external crystal for RCC. Using PLL, the clock

speed is multiplied to generate 72 MHz system clock. A 3.6V, 250mAH backup lithium ion battery is

connected to the VBAT pin. This keeps the backup domain and the RTC core powered.

The RCC’s internal setup is as follows:

Except the RTC clock source selection, the rest of the RCC settings are done with MikroC compiler’s

clock configuration tool. One caution before coding is that the RTC clock should be at least 4 times

slower than PCLK1.

After going through the basics till now, we can understand the necessity for a power supply backup.

This backup can be achieved in various ways. Two common backup sources are:

 Battery – small NiMH, NiCd, Li ion or Lipo cells.

 Supercapacitor – 0.22F to 1F.

I used the former method. The latter method is suitable for short power interruption. I tested this

form of backup for an hour and it worked perfectly. The former works even better. Since the RTC and

the backup module consumes very low power, the backup power source slowly discharges. Supercaps

will discharge much faster with rapid fall of voltage level than batteries and so they are not intended

as long-time backup. However supercaps have long life and need lesser replacements than batteries.

ST recommends that VBAT pin should either be tied to a backup source or to VDD. VBAT pin however

doesn’t charge the backup power source. Thus we need a mechanism to charge the source when VDD

is available. Here are two techniques:

In both methods, diode D1 is a low-drop diode, preferable a switching diode like the 1N5819 Schottky

diode. This diode charges the backup source with VDD source as well as power the VBAT pin with VDD

when available. The allowed VBAT voltage range is 1.8V – 3.6V. With this diode in place, the voltage

on VBAT pin never exceeds the maximum allowed value. VBAT will typically see about 3Vs. Capacitor

C1 stabilizes the backup source and reduces tiny voltage ripples if any.

When we use supercaps instead of batteries, we need to be careful because a fully discharged

supercap behaves like a temporary short circuit. When connected to a power source, it will draw high

currents to rapidly charge itself, creating a temporary power surge as well as voltage dip. If unchecked

this power surge may kill the onboard regulator that powers the MCU. Thus to prevent this from

happening resistor R1 is used. This resistor slowly charges the supercap. With this arrangement it takes

about a minute to charge the supercap. Any power interruption within this time will cause loss of back

register data as well as affect functioning of the RTC.

Coding the RTC

Coding the STM32 embedded RTC is not very easy. A variety of methods can be applied. The code I

wrote is for a 24-hour clock with a calendar starting from epoch to the end of the year 2099. My

code for the RTC can be realized as three major portions:

Configuration

The RTC is configured as per procedure stated in the last section. The RTC_init function does the RTC

configuration part. If the configuration is successful 0 returned otherwise 1 is returned to indicate that

the LSE is not working properly. If LSE clock fails to stabilize within 250ms, it is considered that the LSE

clock is having some problem and further coding is skipped. The RTC counter is not loaded during the

initial configuration session but after that with set_RTC function.

unsigned char RTC_init()

{

 unsigned char timeout = 0;

 if(BKP_DR1 != rtc_access_code)

 {

 enable_power_control_module(true);

 enable_backup_module(true);

 disable_backup_domain_write_protection(true);

 set_backup_domain_software_reset(true);

 set_backup_domain_software_reset(false);

 bypass_LSE_with_external_clock(false);

 enable_LSE(true);

 while((LSE_ready() == false) && (timeout < 250))

 {

 timeout++;

 delay_ms(10);

 };

 if(timeout > 250)

 {

 return 1;

 }

 select_RTC_clock_source(LSE_clock);

 enable_RTC_clock(true);

 while(get_RTC_operation_state() == false);

 while(get_RTC_register_sync_state() == false);

 enable_RTC_second_interrupt(true);

 while(get_RTC_operation_state() == false);

 set_RTC_configuration_flag(true);

 set_RTC_prescalar(32767);

 set_RTC_configuration_flag(false);

 while(get_RTC_operation_state() == false);

 BKP_DR1 = rtc_access_code;

 disable_backup_domain_write_protection(false);

 set_RTC(cal_year, cal_month, cal_date, cal_hour, cal_minute, cal_second);

 }

 else

 {

 while(get_RTC_register_sync_state() == false);

 enable_RTC_second_interrupt(true);

 while(get_RTC_operation_state() == false);

 }

 NVIC_IntEnable(IVT_INT_RTC);

 return 0;

}

Setting/Writing the Time Parameters

After initialization or at any instance we may need to set current time and this is done by using the

set_RTC function. This function has 6 arguments for 6 date-time parameters – year, month, date, hour,

minute and second. In my RTC coding, the calendar time starts from epoch. As per MikroC’s help

documentation:

“Originally it was defined as the beginning of 1970 GMT. (January 1, 1970 Julian day) GMT, Greenwich

Mean Time, is a traditional term for the time zone in England.”

The calendar becomes invalid after the year 2099 – roughly about a century from time of writing this

article. Since the RTC counts seconds and not actual date-time parameters individually, every time

parameter is calculated as second equivalents. For instance 3,600 seconds equal one hour and 86,400

seconds is equal to a complete 24-hour day. During calculations we need to take leap years into

account or otherwise the time calculations will be imperfect after some years.

After having found the present second count, the count value is loaded in the RTC counter registers.

We need to enter in configuration mode for setting this count value and we need to exit this mode at

the end of setting it. From this time forth, the RTC starts counting time. Whatever it then returns is

the current time.

void set_RTC(unsigned int year, unsigned char month, unsigned char date, unsigned char hour, unsigned char minute,

unsigned char second)

{

 unsigned int i = 0;

 unsigned long counts = 0;

 if(year > 2099)

 {

 year = 2099;

 }

 if(year < 1970)

 {

 year = 1970;

 }

 for(i = 1970; i < year; i++)

 {

 if(check_for_leap_year(i) == 1)

 {

 counts += 31622400;

 }

 else

 {

 counts += 31536000;

 }

 }

 month -= 1;

 for(i = 0; i < month; i++)

 {

 counts += (((unsigned long)month_table[i]) * 86400);

 }

 if(check_for_leap_year(cal_year) == 1)

 {

 counts += 86400;

 }

 counts += ((unsigned long)(date - 1) * 86400);

 counts += ((unsigned long)hour * 3600);

 counts += ((unsigned long)minute * 60);

 counts += second;

 enable_power_control_module(true);

 enable_backup_module(true);

 disable_backup_domain_write_protection(true);

 set_RTC_configuration_flag(true);

 set_RTC_counter(counts);

 set_RTC_configuration_flag(false);

 while(get_RTC_operation_state() == false);

 disable_backup_domain_write_protection(false);

}

Reading the Time Parameters

Reading time is just the opposite of setting it. The RTC counter registers are read and the current count
is stored in a variable. From this variable, the code first find the number of days that has passed since
epoch. Based on this info, the code findd current year and then current month, taking leap years into
account in both steps. Finally we get date and time parameters. Reading time doesn’t need any special
privilege as like in writing time parameters.

void get_RTC()
{
 unsigned int temp1 = 0;
 static unsigned int day_count;

 unsigned long temp = 0;
 unsigned long counts = 0;

 counts = RTC_CNTH;
 counts <<= 16;
 counts += RTC_CNTL;

 temp = (counts / 86400);

 if(day_count != temp)
 {
 day_count = temp;
 temp1 = 1970;

 while(temp >= 365)
 {
 if(check_for_leap_year(temp1) == 1)
 {
 if(temp >= 366)
 {
 temp -= 366;
 }

 else
 {
 break;
 }
 }

 else
 {
 temp -= 365;
 }

 temp1++;
 };

 cal_year = temp1;

 temp1 = 0;
 while(temp >= 28)
 {
 if((temp1 == 1) && (check_for_leap_year(cal_year) == 1))
 {
 if(temp >= 29)
 {

 temp -= 29;
 }

 else
 {
 break;
 }
 }

 else
 {
 if(temp >= month_table[temp1])
 {
 temp -= ((unsigned long)month_table[temp1]);
 }

 else
 {
 break;
 }
 }

 temp1++;
 };

 cal_month = (temp1 + 1);
 cal_date = (temp + 1);
 }

 temp = (counts % 86400);

 cal_hour = (temp / 3600);
 cal_minute = ((temp % 3600) / 60);
 cal_second = ((temp % 3600) % 60);
}

Lastly an interrupt is used to update time parameters as well as clear interrupt flags.

void RTC_ISR()

iv IVT_INT_RTC

ics ICS_AUTO

{

 if(get_RTC_second_flag_state() == true)

 {

 update_time = 1;

 clear_RTC_second_flag();

 }

 clear_RTC_overflow_flag();

 while(get_RTC_operation_state() == false);

}

In complete code, there are functions for displaying time parameters in the LCD easily and efficiently.

The four buttons connected to the GPIOA port pins are for entering settings mode, increasing a

parameter, decreasing a parameter and finally to accept the new value of the parameter that has been

selected for alternation. Here’s the complete code:

#include "RTC.h"

#include "GPIO.h"

#include "BACKUP.h"

#define rtc_access_code 0x9999

#define set_button_pin 0

#define inc_button_pin 1

#define dec_button_pin 2

#define esc_button_pin 3

sbit LCD_RS at GPIOB_ODR.B10;

sbit LCD_EN at GPIOB_ODR.B11;

sbit LCD_D4 at GPIOB_ODR.B12;

sbit LCD_D5 at GPIOB_ODR.B13;

sbit LCD_D6 at GPIOB_ODR.B14;

sbit LCD_D7 at GPIOB_ODR.B15;

const unsigned char month_table[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

unsigned char cal_hour = 0;

unsigned char cal_date = 1;

unsigned char cal_month = 1;

unsigned char cal_minute = 0;

unsigned char cal_second = 0;

unsigned int cal_year = 1970;

bit update_time;

void setup_mcu();

void setup_GPIOs();

unsigned char RTC_init();

void get_RTC();

void set_RTC(unsigned int year, unsigned char month, unsigned char date, unsigned char hour, unsigned char

minute, unsigned char second);

unsigned char check_for_leap_year(unsigned int year);

void show_value(unsigned char x_pos, unsigned char y_pos, unsigned char value);

void show_year(unsigned char x_pos, unsigned char y_pos, unsigned int value);

unsigned int change_value(unsigned char x_pos, unsigned char y_pos, signed int value, signed int value_min, signed

int value_max, unsigned char value_type);

void settings();

void RTC_ISR()

iv IVT_INT_RTC

ics ICS_AUTO

{

 if(get_RTC_second_flag_state() == true)

 {

 update_time = 1;

 clear_RTC_second_flag();

 }

 clear_RTC_overflow_flag();

 while(get_RTC_operation_state() == false);

}

void main()

{

 setup_mcu();

 lcd_out(1, 7, ": :");

 lcd_out(2, 6, "/ /");

 while(1)

 {

 settings();

 if(update_time)

 {

 get_RTC();

 show_value(5, 1, cal_hour);

 show_value(8, 1, cal_minute);

 show_value(11, 1, cal_second);

 show_value(4, 2, cal_date);

 show_value(7, 2, cal_month);

 show_year(10, 2, cal_year);

 update_time = 0;

 }

 };

}

void setup_mcu()

{

 unsigned char i = 0;

 setup_GPIOs();

 Lcd_Init();

 Lcd_Cmd(_LCD_CLEAR);

 Lcd_Cmd(_LCD_CURSOR_OFF);

 Lcd_Out(1, 4, "STM32 RTC.");

 i = RTC_init();

 switch(i)

 {

 case 1:

 {

 lcd_out(2, 1, "RTC init. failed");

 while(1);

 }

 default:

 {

 lcd_out(2, 1, "RTC init success");

 delay_ms(2000);

 break;

 }

 }

 Lcd_Cmd(_LCD_CLEAR);

}

void setup_GPIOs()

{

 enable_GPIOA(true);

 setup_GPIOA(set_button_pin, digital_input);

 enable_pull_up_GPIOA(set_button_pin);

 setup_GPIOA(inc_button_pin, digital_input);

 enable_pull_up_GPIOA(inc_button_pin);

 setup_GPIOA(dec_button_pin, digital_input);

 enable_pull_up_GPIOA(dec_button_pin);

 setup_GPIOA(esc_button_pin, digital_input);

 enable_pull_up_GPIOA(esc_button_pin);

 enable_GPIOB(true);

 setup_GPIOB(10, (GPIO_PP_output | output_mode_medium_speed));

 setup_GPIOB(11, (GPIO_PP_output | output_mode_medium_speed));

 setup_GPIOB(12, (GPIO_PP_output | output_mode_medium_speed));

 setup_GPIOB(13, (GPIO_PP_output | output_mode_medium_speed));

 setup_GPIOB(14, (GPIO_PP_output | output_mode_medium_speed));

 setup_GPIOB(15, (GPIO_PP_output | output_mode_medium_speed));

}

unsigned char RTC_init()

{

 unsigned char timeout = 0;

 if(BKP_DR1 != rtc_access_code)

 {

 enable_power_control_module(true);

 enable_backup_module(true);

 disable_backup_domain_write_protection(true);

 set_backup_domain_software_reset(true);

 set_backup_domain_software_reset(false);

 bypass_LSE_with_external_clock(false);

 enable_LSE(true);

 while((LSE_ready() == false) && (timeout < 250))

 {

 timeout++;

 delay_ms(10);

 };

 if(timeout > 250)

 {

 return 1;

 }

 select_RTC_clock_source(LSE_clock);

 enable_RTC_clock(true);

 while(get_RTC_operation_state() == false);

 while(get_RTC_register_sync_state() == false);

 enable_RTC_second_interrupt(true);

 while(get_RTC_operation_state() == false);

 set_RTC_configuration_flag(true);

 set_RTC_prescalar(32767);

 set_RTC_configuration_flag(false);

 while(get_RTC_operation_state() == false);

 BKP_DR1 = rtc_access_code;

 disable_backup_domain_write_protection(false);

 set_RTC(cal_year, cal_month, cal_date, cal_hour, cal_minute, cal_second);

 }

 else

 {

 while(get_RTC_register_sync_state() == false);

 enable_RTC_second_interrupt(true);

 while(get_RTC_operation_state() == false);

 }

 NVIC_IntEnable(IVT_INT_RTC);

 return 0;

}

void get_RTC()

{

 unsigned int temp1 = 0;

 static unsigned int day_count;

 unsigned long temp = 0;

 unsigned long counts = 0;

 counts = RTC_CNTH;

 counts <<= 16;

 counts += RTC_CNTL;

 temp = (counts / 86400);

 if(day_count != temp)

 {

 day_count = temp;

 temp1 = 1970;

 while(temp >= 365)

 {

 if(check_for_leap_year(temp1) == 1)

 {

 if(temp >= 366)

 {

 temp -= 366;

 }

 else

 {

 break;

 }

 }

 else

 {

 temp -= 365;

 }

 temp1++;

 };

 cal_year = temp1;

 temp1 = 0;

 while(temp >= 28)

 {

 if((temp1 == 1) && (check_for_leap_year(cal_year) == 1))

 {

 if(temp >= 29)

 {

 temp -= 29;

 }

 else

 {

 break;

 }

 }

 else

 {

 if(temp >= month_table[temp1])

 {

 temp -= ((unsigned long)month_table[temp1]);

 }

 else

 {

 break;

 }

 }

 temp1++;

 };

 cal_month = (temp1 + 1);

 cal_date = (temp + 1);

 }

 temp = (counts % 86400);

 cal_hour = (temp / 3600);

 cal_minute = ((temp % 3600) / 60);

 cal_second = ((temp % 3600) % 60);

}

void set_RTC(unsigned int year, unsigned char month, unsigned char date, unsigned char hour, unsigned char

minute, unsigned char second)

{

 unsigned int i = 0;

 unsigned long counts = 0;

 if(year > 2099)

 {

 year = 2099;

 }

 if(year < 1970)

 {

 year = 1970;

 }

 for(i = 1970; i < year; i++)

 {

 if(check_for_leap_year(i) == 1)

 {

 counts += 31622400;

 }

 else

 {

 counts += 31536000;

 }

 }

 month -= 1;

 for(i = 0; i < month; i++)

 {

 counts += (((unsigned long)month_table[i]) * 86400);

 }

 if(check_for_leap_year(cal_year) == 1)

 {

 counts += 86400;

 }

 counts += ((unsigned long)(date - 1) * 86400);

 counts += ((unsigned long)hour * 3600);

 counts += ((unsigned long)minute * 60);

 counts += second;

 enable_power_control_module(true);

 enable_backup_module(true);

 disable_backup_domain_write_protection(true);

 set_RTC_configuration_flag(true);

 set_RTC_counter(counts);

 set_RTC_configuration_flag(false);

 while(get_RTC_operation_state() == false);

 disable_backup_domain_write_protection(false);

}

unsigned char check_for_leap_year(unsigned int year)

{

 if(year % 4 == 0)

 {

 if(year % 100 == 0)

 {

 if(year % 400 == 0)

 {

 return 1;

 }

 else

 {

 return 0;

 }

 }

 else

 {

 return 1;

 }

 }

 else

 {

 return 0;

 }

}

void show_value(unsigned char x_pos, unsigned char y_pos, unsigned char value)

{

 unsigned char ch = 0;

 ch = (value / 10);

 lcd_chr(y_pos, x_pos, (ch + 0x30));

 ch = (value % 10);

 lcd_chr(y_pos, (x_pos + 1), (ch + 0x30));

}

void show_year(unsigned char x_pos, unsigned char y_pos, unsigned int value)

{

 unsigned char temp = 0;

 temp = (value / 100);

 show_value(x_pos, y_pos, temp);

 temp = (value % 100);

 show_value((x_pos + 2), y_pos, temp);

}

unsigned int change_value(unsigned char x_pos, unsigned char y_pos, signed int value, signed int value_min, signed

int value_max, unsigned char value_type)

{

 while(1)

 {

 switch(value_type)

 {

 case 1:

 {

 lcd_out(y_pos, x_pos, " ");

 break;

 }

 default:

 {

 lcd_out(y_pos, x_pos, " ");

 break;

 }

 }

 delay_ms(60);

 if(get_GPIOA_pin_state(inc_button_pin) == low)

 {

 value++;

 }

 if(value > value_max)

 {

 value = value_min;

 }

 if(get_GPIOA_pin_state(dec_button_pin) == low)

 {

 value--;

 }

 if(value < value_min)

 {

 value = value_max;

 }

 switch(value_type)

 {

 case 1:

 {

 show_year(x_pos, y_pos, ((unsigned int)value));

 break;

 }

 default:

 {

 show_value(x_pos, y_pos, ((unsigned char)value));

 break;

 }

 }

 delay_ms(90);

 if(get_GPIOA_pin_state(esc_button_pin) == low)

 {

 while(get_GPIOA_pin_state(esc_button_pin) == low);

 delay_ms(200);

 return value;

 }

 };

}

void settings()

{

 if(get_GPIOA_pin_state(set_button_pin) == low)

 {

 while(get_GPIOA_pin_state(set_button_pin) == low);

 NVIC_IntDisable(IVT_INT_RTC);

 update_time = 0;

 cal_hour = change_value(5, 1, cal_hour, 0, 23, 0);

 cal_minute = change_value(8, 1, cal_minute, 0, 59, 0);

 cal_second = change_value(11, 1, cal_second, 0, 59, 0);

 cal_date = change_value(4, 2, cal_date, 1, 31, 0);

 cal_month = change_value(7, 2, cal_month, 1, 12, 0);

 cal_year = change_value(10, 2, cal_year, 1970, 2099, 1);

 set_RTC(cal_year, cal_month, cal_date, cal_hour, cal_minute, cal_second);

 NVIC_IntEnable(IVT_INT_RTC);

 }

}

Checkout the photos and videos of the embedded RTC. The firsts are with battery backup and the
latter are with supercap backup.

Project video link: https://www.youtube.com/watch?v=b4cop0915j8.

https://www.youtube.com/watch?v=b4cop0915j8

Video link: https://www.youtube.com/watch?v=sdjNY3q1khw.

https://www.youtube.com/watch?v=sdjNY3q1khw

Epilogue

I am very impressed with accuracy of the embedded RTC. I kept it running for several days during

which deliberate power interruptions were carried out several times. Despite these abuses, the RTC

kept functioning as it should. I found it as dependable as other good RTC chips. The good part is the

fact that I won’t be needing any addition RTC chips any more for those projects that need time

keeping.

At the time of writing this article MikroElektronika launched a new product called Hexiwear. It is a

hexagonally-shaped wearable IOT-based smart watch with lot of options for measurements,

connectivity and expandability. It is based on an ARM chip from NXP. Because it is based on ARM, it

opened a lot of possibilities for developers. If you checkout the dedicated page for Hexiwear -

http://www.hexiwear.com/, you will notice that the stuffs onboard this device are mentioned on its

specs but no RTC chip is mentioned and that’s because the NXP MCU just like the STM32 in this post

has an embedded real-time clock unit. This product is enough to show the advantage of having an

embedded RTC. In my professional career I have seen other ARM based products especially from

STMicroelectronics that did not use any RTC chip rather than the embedded RTC.

References:

 STM32F10x Reference Manual

http://www.st.com/web/en/resource/technical/document/reference_manual/CD00171190.

pdf

 Clock or calendar implementation on the STM32F10xxx microcontroller RTC

http://www.st.com/web/en/resource/technical/document/application_note/CD00207941.p

df

 Hexiwear Page

http://www.hexiwear.com/

Happy coding.

Author: Shawon M. Shahryiar
https://www.facebook.com/groups/microarena
https://www.facebook.com/MicroArena 18.03.2016

http://www.hexiwear.com/
http://www.st.com/web/en/resource/technical/document/reference_manual/CD00171190.pdf
http://www.st.com/web/en/resource/technical/document/reference_manual/CD00171190.pdf
http://www.st.com/web/en/resource/technical/document/application_note/CD00207941.pdf
http://www.st.com/web/en/resource/technical/document/application_note/CD00207941.pdf
http://www.hexiwear.com/
https://www.facebook.com/groups/microarena/
https://www.facebook.com/MicroArena?ref=hl

