
DynTFTCodeGen

-VCC-
v1.0 April-June 2019, v1.1 – v1.2 April 2020, v1.3 May 2020

Table of contents:
1. Introduction
2. Included files
3. Component Palette
4. Drawing Board
5. Object Inspector
6. Screens
7. Application level settings
8. Project level settings
9. Code generation
10. RTTI and binary representation of UIs
11. Additional units in DynTFT projects

1. Introduction
DynTFTCodeGen is a tool, used for designing and generating initialization code and event

handlers for DynTFT projects. It features a drawing board, an object inspector, a component palette
and various dialog boxes for application and project level settings.

[Parts of the application, or other components can be named differently across this documentation,
like "ObjectInspector", "Object Inspector", "Object inspector", "object inspector". It is similar for
other descriptions like "Designtime", "Design time", "Design-time". They refer to the same thing.
This is mostly for readability.]
The following introduction sections mention various parts of the application, which should be
described later in other chapters of this documentation.

1.1 Features
- Component properties can be edited using an object inspector. Event handlers are also

included.
- Components can be locked, so their position and size can't be accidentally changed. When

a component is locked, it can't be dragged/moved or resized on the drawing board.
- Ability to preview the design using a color theme (.dyncol file) - see limitations below.
- Components are organized using screens, so they wouldn't be displayed all at once.
- Components belonging to a particular screen, can be set to be visually persisted across all

screens (design-time only).
- Ability to drop on the drawing board, components which are usually part of other

components, that do not work on their own: Items, RadioButton, TabButton, KeyButton,
MessageBox.

- Component properties are organized in two categories: Runtime and Designtime. Runtime
properties are found in component type definition, while Designtime ones are used for editing only.

1.2 Known issues
- Components are flickering when moved or resized on the drawing board.
- Can't properly move/resize a component while scrolling with the mouse wheel
- On particular OS setups, the application can display "Cannot focus a disabled or invisible

1

window." after starting.
- Sometimes, after closing the application, it can keep a CPU core to the maximum (not sure

how to reproduce). This was encountered a few times during development, so it might be related to
test builds only.

- When manually removing component registration from a component, in Project Settings
window, it automatically removes its dependencies, no matter they were set as dependencies of
another component or not. The generated code should not be affected.

1.3 Features, not bugs
Some parts of the application may behave a bit differently than expected. This is by design, either to
optimize operations or to keep implementations simpler. Others might be considered incomplete
implementations.

- Copying components using keyboard shortcuts, requires the drawing board to be focused
(mouse over drawing board). This depends also on a setting to automatically focus the drawing
board when being hovered with the mouse. If that setting is off, users will have to click on one or
more components to focus the drawing board, prior to the copy operation.

- Ctrl-A selects only those components from current screen. Use Ctrl-Shift-A for all screens.
- Components are hidden while pasting or selecting (for a faster operation). Users may

notice that components are hidden for a few milliseconds. Pasting requires new components to be
created, so setting their position and size would require additional painting operations. Being
hidden, some of these operations are skipped.

- Copy-paste operations do not include screen size. Only components are copied.
- When pasting components (all copied from the same screen), they are pasted in the current

screen, regardless of their "ScreenIndex" property.
- When dragging multiple selected components, towards 0 (either left or top), their relative

position changes as they are constrained to the visible area. Since there is no undo operation, this
can be cancelled by right-clicking while the left mouse button is still down.

- Property values, which depend on compiler directives, are displayed in red in
ObjectInspector

- When starting to drag a component, the component won't move for the first 5px
(configurable) of mouse movement in any direction. This is to prevent accidental moving on
MouseDown. Hold Alt key while dragging, to temporarily disable this feature.

1.4 Limitations
- There is no information about used memory of the DynTFT components, at design time.

Please use a simulator, as provided in DynTFT examples.
- There is no live drawing for VirtualKeyboard (colors are set to default). It has fixed size.

This is because of the internal complexity of this component. Since there is no pointer to each key
button, the keyboard relies on the internal structure of DynTFT to keep track of all its buttons.
DynTFTCodeGen does not use that structure, so it would require a different mechanism of keeping
track of all these buttons.

- No Unicode support.
- No zoom support.
- No undo/redo support.
- Although Object Inspector and Component Palette can be resized, they can't be moved.
- Many things are hardcoded, so there is no support for user-defined components. Although

parts of the application allow customization, it was not implemented for adding new components.
- Runtime Z order may not always match design-time Z order. Most of the time, components

2

should not be overlapped. More than that, there are some components (e.g. DynTFTComboBox,
which bring some of their parts to front, on run time, changing design-time Z order).

- Components can only be brought to front or sent to back.
- Not all constants are available in ObjectInspector as choices for a particular property.

Constants are displayed based on their data type.
- Some enum-like properties (e.g. ArrowDir, Direction, Orientation etc) are allowed to be set

to all available constants of a component.
- Displayed components are not transparent, so if overlapping, they may look a bit different

on simulator and hardware.
- Schema files are not validated, so expect crashes or bugs if manually edited.
- Components don't snap to a grid or to each other. Use the "Lock" property to avoid moving

them accidentally.
- Property values are not displayed in bold in ObjectInspector, if different than defaults.
- Adding new tabs to a page control, or new radio buttons to a radio group can be done only

by using their "Items" property. There is no special pop-up menu for these components.
- Unknown component properties are ignored when loading a project. They are discarded on

save. The same for copy-paste. This may be encountered when having two or more instances of
DynTFTCodeGen, installed in multiple different locations, each with its own set of different
schema files.

- Changing direction/orientation of a ScrollBar, TrackBar or ProgressBar, does not
automatically swap their Width and Height values.

- Switching from one component to another on the DrawingBoard does not automatically
select the last focused property in ObjectInspector.

- The icon order in component Palette is hardcoded. Icons are also built-in.
- Colors from color themes, are not embedded in projects. They have to be manually loaded

when needed. Color themes will have to be managed separately for each DynTFT project.
- When pasting components leads to duplicate names, only the object names are modified.

Captions are kept.
- When pasting components from multiple screens, the current screen is not changed, but the

paste operation succeeds.
- No built-in simulator. Users will have to manually rebuild their project simulators after

every code generation.
- Double clicking on properties in ObjectInspector, is not implemented for all property types.
- Double clicking on events in ObjectInspector starts a 200ms timer to automatically create a

new handler. The double click action has to be faster than 200ms, to create the handler.
- Double clicking on a component does not generate an event handler. Use the

ObjectInspector.
- No support for vertical text orientation. This is a limitation of DynTFT library.
- The height of items (see "ItemHeight" property) of the Items component, has to be

manually adjusted according to used font. The same for button height on PageControl.
- Empty RadioGroups and PageControls will generate uncompilable code. Always have at

least one button. If manually creating buttons at run time is desired, either use a
RadioGroup/PageControl with a button and remove it dynamically, or manually create the
RadioGroup/PageControl at run time.

- Project file name is added to generated files, to warn users about overwriting with a
different project. If there are two projects with the same name in different locations, no warning is
given. Also, the project name is verified from DynTFTGUI.pas only.

- Handler names are verified as case sensitive. If renamed to a different case, they are added
as new handlers. Old handler headers will have to be manually removed. The same for parameter
list of these handlers, which have to match definitions from Schema files. If they don't match, new

3

ones are created.
- Unused/unassigned event handlers are removed from a DynTFTCodeGen project, only

when closing the project. If they appear in generated code, they have to be manually removed.
- Handler implementation is added based on new added handlers with regard to existing

handler headers in the generated file. If their implementation is manually removed, the new
implementation is re-added, only if adding new handlers or removing their headers from the
interface section of the DynTFTHandles.pas unit.

- Properties are organized into Runtime and Designtime categories in ObjectInspector. They
are sorted by name in each category. That can't be changed.

- Some property names are hardcoded into application, like "ObjectName", "ScreenIndex",
"Left", "Top", "Width", "Height", "CreatedAtStartup", "HasVariableInGUIObjects", "Locked",
"ActiveFont" etc. Do not rename them in schema files, as the application will become unusable.

- Not all properties / data types are constrained in ObjectInspector. Be careful about what
you input. Integer properties accept string values, to allow user-defined constants to be used. This is
to allow assigning variables, constants, functions etc to a property, ar runtime, which
DynTFTCodeGen should not know about. However, properties like "ObjectName", "ScreenIndex",
"Left", "Top", "Width", "Height" are required by DynTFTCodeGen, and have to be assigned to
constants at designtime.

- In ObjectInspector, properties of array type (e.g. "Strings", "Items^.String",
"AllButtonsWidth" etc) display their values in a single line, without any blank between values. An
items editor is available to edit such properties.

- Object names are not validated against existing event handler names or viceversa. Name
collisions will be detected on compiling the DynTFT project.

- When the template files are changed (*.txt files from the OutputParts directory), for the
handlers file, the changes have to be manually applied. This is because DynTFTCodeGen either
generates this file from scratch or adds code to it, but does not keep it in sync with template files.

- When there are components for which no property is set and all of them are configured to
have no variable in DynTFTGUIObjects file, a local variable is generated and left unused after
assignment. This will cause a compiler notification about unused variables. The limitation comes
from the Schema files, which only support one type of implementation, assuming that components
will be customized and at least one property will have a value different than default.

- Although DynTFTCodeGen projects contain the list of available components, if loading a
project in a DynTFTCodeGen instance, which has a different list of available components, the
project may not be loaded properly.

- DynTFTCodeGen can work with up to 255 screens and will generate code for them. It does
not take into account the number of screens the library supports. See
CDynTFTMaxComponentsContainer constant from DynTFTTypes.pas unit.

- The colors used at design-time are 32-bit only. The code generator handles both 32-bit and
16-bit colors when generating output files. See Project Settings for options.

- DynTFTCodeGen does not control the color theme used by a project. The color theme has
to be manually included in a DynTFT project, using the DynTFTColorTheme.inc file.

- There is no option to limit the number of recent files. If really needed, the
DynTFTCodeGen.ini file can be edited using a text editor.
- DynTFTCodeGen does not manage DynTFT projects. Compiler directives, like
DynTFTFontSupport have to be manually added to projects (Project Settings in Delphi/FreePascal
and .pld files in mikroPascal). The same for extra units, e.g.: ExternalResources.pas, added in
DynTFTGUIAdditionalUnits.inc.

- No full support for RTTI on all components. RadioGroups and PageControls require
special code to add buttons, which cannot be binary encoded using the current format.

- RTTI for PIC24/dsPIC si not fully tested.

4

1.5 FAQ:
- Q: Does DynTFTCodeGen backup the projects it saves?
- A: No, it does not backup projects. It is recommended to use a version control software and

keep track of as many changes as possible. It does create backups of the generated
DynTFTHandlers.pas file, because it is expected that users edit this file using a source code editor.

- Q: When I copy the value of a property from one component, then paste it to another
component, why does it set its value to "[SelectionInfo]"?

- A: The "[SelectionInfo]" string is part of the copy-paste format content when copying
components. This indicates that a component was focused when pressing Ctrl-C, not the Object
Inspector. Make sure not to move the mouse cursor outside Object Inspector when copying a
property value. Also, see Application Settings for options about focusing the drawing board.

- Q: How do I add my custom component to the application?
- A: As mentioned in the "Limitations" section, there is no proper support for that. The

application statically depends on DynTFT to draw components. You can add your schema file to the
"\Schemas" directory and add an entry to DynTFTCodeGenInstalledComponents.ini, but there
would be no drawing for the new component. Automatic design-time calculations won't be possible
either (e.g. see the "ItemHeight" property of a RadioGroup).

- Q: Why the property for the name of a component is called "ObjectName" and not
"Name"?

- A: "Name", if implemented, should be a runtime property and it wouldn't be practical to
ensure it is unique. It may be useful mostly for debugging. See BaseSchema.dynscm file.

- Q: Why the property for font is "ActiveFont" and not simply "Font"?
- A: ActiveFont is a pointer to font information. It is unpractical to store the entire

description of a font in a property, so a different name makes more sense.

- Q: Out of the four generated files, which one can be manually edited using an external
editor?

- A: Only DynTFTHandlers.pas can be manually edited, so users can add code to the
pregenerated handlers. The other three files (DynTFTGUI.pas, DynTFTGUIObjects.pas and
DynTFTFonts.pas) are completely regenerated.

- Q: How to swap two screens or move a screen to a different index?
- A: Hover the tab buttons of the list of screens with the mouse, hold the Ctrl key and start

scrolling with the mouse wheel.

- Q: Can the settings of the default font be changed?
- A: Yes, just add it to the list in the Project Setting dialog, then change the settings. This is

useful when using a custom TFT library.

- Q: If the generated code is smaller and less RAM is used when the
"HasVariabileInGUIObjects" property is set to false for most components, why isn't this the default
value?

- A: It is easier for users to find a component by its object name. For components which
generate an event and have an assigned event handler, the Sender parameter of the handler can be
used to get a pointer to that component. They can have the "HasVariabileInGUIObjects" property
set to False. It requires typecasting though.

5

- Q: Where should I look first, if something behaves different than expected?
- A: There are general application settings and project-level settings, found under the Tools

menu. In addition to that, there are screen options under the Screens pop-up menu. There are also
various design-time component properties, which configure component behavior. Hints/tooltips will
pop up all over the application. Unfortunately, not all features are configurable.

- Q: What should I do if I find a bug?
- A: Before reporting a bug, please see if it is already mentioned in one of the "Known

issues", "Features, not bugs" or "Limitations" sections above. Do not send me or publicly post
projects (*.dyntftcg files), as they might contain information you don't want to give away. If a
minimal project is required to report a bug, please open it using a text editor, and look for stuff you
might want to remove. When reporting a bug, it is desired to mention the steps used to reproduce
the bug, by having the first step as "open the application", followed by "click here", "click
there"-like steps. Also, if a project is already corrupt (either by DynTFTCodeGen or manually
edited using a text editor), it has no value in reproducing a bug, because the application is not
designed to handle corruptions. However, it is very useful to have the steps about how a good
project can be corrupted by the application. If you are editing schema files, bug reports may have
little value, because these are not validated, so the application may not work properly.

- Q: Can I use an already existing DynTFTHandlers.pas file in a project in which
DynTFTCodeGen generates this file?

- A: Yes, if the code generation symbols are manually added on functions/procedures (also
notice the difference //CodegenSym:header vs. //CodegenSym:handler) and the headers match the
string format that comes from schema files. Probably, the easiest way is to let DynTFTCodeGen
generate an empty file, then you can add your code to it.

- Q: Can I use "OnClickUser" event on components?
- A: At the moment of writing this, DynTFT library does not implement this event. Please

use "OnMouseUpUser" event.

1.6 Application overview
DynTFTCodeGen is a simple application, with a main window and a few configuration

windows. From the component palette, with currently implemented DynTFT components, users add
components to the drawing board, by dragging them. They can be moved or resized on the drawing
board, either by mouse or by keyboard. Various properties and event handlers can be set from the
object inspector.

Components are organized into screens, so they won't be displayed all at once. Screens can
be active or inactive, and persisted or not persisted. Active screens match the "Active" field of the
"TDynTFTScreenComponentInfo" field, which controls which components to be painted, based on
their "ScreenIndex" property/field. There are cases when users want components from a particular
screen to be visible across all screens. For this, screens can be set to be persisted, so their
components will be visible regardless of the current selected screen. For example, in the following
screenshot, the first screen, called "Tabs" is set to persisted (notice the red pin icon over the (blue)
screen icon), so the PageControl (the top most visible component on the drawing board) is visible,
although the current screen is set to "Tab5". This is the intended behavior at run time, when this
PageControl belongs to an active screen (at index 0), and is used to activate / deactivate the other
screens. When changing current screen, components are hidden and displayed, based on their
"ScreenIndex" property.

6

The Object Inspector is a key–value list (or property name – property value list), with all
available properties of a component, defined by the schema files. It also features a property
description box. Based on their data type, properties can be modified from the Object Inspector by
various local editing components (Edit, ComboBox, ColorBox) or an items editor in case of array-
like properties.

The main menu is kept simple, featuring File, Edit and Tools. There are also pop-up menus
for drawing board, screens and components. The File menu is used for opening and saving projects,
the Edit menu is organized into component and screen operations, while the Tools menu contains
operations like application settings, project settings, loading color theme and generating code.

2. Included files
The application comes as a single executable, DynTFTCodeGen.exe, with various

configuration files. It uses two ini files: DynTFTCodeGenInstalledComponents.ini and
DynTFTCodeGen.ini . The first one is only loaded by the application, and it contains the list of
component names. The other is loaded at startup and saved on close, and is used for general
application settings. It is expected that both files are in the same directory as the executable.

If users want to install DynTFTCodeGen in a directory with restricted write permissions,
like Program Files, the application would require to be started as Administrator, to be able to write
to its DynTFTCodeGen.ini file. To avoid starting it as administrator, users can manually create a
third ini file, called DynTFTCodeGenIniOverride.ini and place it in the same directory as the
executable. This file should contain the path to DynTFTCodeGen.ini. Thus, DynTFTCodeGen.ini
can be loaded from and saved to a directory without special write permissions.
In this case, DynTFTCodeGenIniOverride.ini should have the following structure:

[IniOverride]
Filename=Path\To\DynTFTCodeGen.ini
InstalledComponentsFilename=Path\To\DynTFTCodeGenInstalledComponents.ini

7

In the current version, the application does not save the DynTFTCodeGenInstalledComponents.ini
file, but allows it to be loaded from a different location.

Schema files are found in the \Schema directory, relative to the executable. These files
describe the available installed components. They contain the list of properties, events, constants
and code templates for code generator. There is a common schema file (BaseSchema.dynscm),
which contains properties, events and constants for all the other components. They roughly match
the fields from the "TDynTFTBaseProperties" structure in DynTFTypes.pas file of the library.

Base properties from BaseSchema.dynscm, can be overridden in component schema files, for
further customization. Schema files are also the place where properties are configured as run-time
or design-time properties. As mentioned in the previous chapter, new components can be added by
creating new Schema files and adding them to the DynTFTCodeGenInstalledComponents.ini file,
but, they will neither have a drawing on the Drawing Board, nor an icon in the palette. Schema files
are loaded once, at application startup.

OutputParts files are common sections of the generated files. They can be found in the
\OutputParts directory near the executable. OutputParts files are loaded at every code generation.
For now, the DynTFTFonts.pas file is completely generated without OutputParts files.

3. Component Palette
This part of the application's main window, displays the available components that can be

worked with. Its content is described in DynTFTCodeGenInstalledComponents.ini file, and by
default, it consists of 20 components, organized into two categories: "System Components" and
"Other Components". Out of the 19 available system components, five are marked as "Do not use",
because they are not designed to be standalone in a DynTFT project. They can be found by a red x
icon next to them. Although unusable as standalone, they can be placed on the drawing board, for
preview purposes. Except the DynTFTMessageBox component, if placed on the drawing board, all
of these "Do not use" will cause the application to generate code in the output files, which should be
perfectly fine.

In the "Other Components" category, there is a DynTFTComment component, which is
configured not to generate code for the output files. It is a design-time component and it can be
placed as much as needed on the drawing board. It can be configured to use custom fonts and
colors.

To place a component on the drawing board, simply drag it from Component Palette. In case
the component a user is looking for, is difficult to spot, there is a search box, below the list of
components, which can be used to search for a component by its name.

4. Drawing Board
All components end up on the drawing board, to be placed into position and resized as

needed. The drawing board allows components to be moved, resized, selected, copied, cut, pasted
and deleted. Using the keyboard, components can be moved by holding the Ctrl key and pressing
one of the arrow keys. For fast moving, also the Shift key has to be held, together with the Ctrl key.
For resizing, only the Shift key has to be held, while pressing the arrow keys. As mentioned in the
"Limitations" section from the Introduction chapter, components do not snap to a grid or to each
other. There are however, alignment "guide" lines, which appear when one or more components are
aligned to other components, during moving or resizing. They indicate top to top, left to left, right
to right or bottom to bottom alignments.

The selection can be done by mouse, or by keyboard. When selected using the mouse,
components from multiple screens can be added to selection, by holding either Ctrl or Shift keys
while clicking on components. There is no difference between these keys when selecting. Both are

8

used identically for convenience. When done by keyboard, there are two shortcuts, Ctrl-A and
Ctrl-Shift-A, to select all components. The first one is used to select components from the current
screen, while the other selects all components across all screens.

On the drawing board, components have a pop-up menu, which allows cutting, copying,
deleting and bringing them to front or sending them to back. The drawing board itself has its own
pop-up menu, which allows pasting components from clipboard and selecting all components. The
copy-paste operation uses a text clipboard format, which allows these operations across multiple
instances of the application. As a restriction, the drawing board has to be focused when copying
using the Ctrl-C keyboard shortcut. The application is configured by default to focus the drawing
board when hovered with the mouse. Unfortunately, there is no indication when it is focused or not.

Also from the drawing board, the screen size is configured, by dragging the two red bars.
For fine tuning, these screen edges can be moved using the arrow keys on the keyboard, while
holding them with the left mouse button. For now, their color is not configurable and they can't be
hidden. However, they can be locked using their pop-up menu. The screen size, configured by these
two bars, does not directly configure the screen size in a DynTFT project. They have to be manually
matched. The screen size is set by default to 480x272 and this is a project-level setting.

5. Object Inspector
When one or more components are selected, the object inspector is populated with

component properties, based on the current selection. This is where component properties and event
handlers can be set. Properties are organized into two categories, design time and run time. In both
sections, there are properties which come from the base schema file and properties which are
component related. Some property names are hardcoded into application and expected to exist.
These include "ObjectName", "ScreenIndex", "Left", "Top", "Width", "Height",
"CreatedAtStartup", "HasVariableInGUIObjects", "Locked", "ActiveFont", "MinWidth",
"MinHeight", "MaxWidth", "MaxHeight", "Count", "AllButtonWidths", "AllButtonLefts",
"PageCount" etc.

5.1 Object Inspector overview
The run time properties, match the available fields in a component's data type structure, by

name. More than that, there are run time properties, which match fields from subcomponents. This
is to allow code generation by property name, even for subcomponents. As a downside, selecting
two components, with a common property, where one is a property of a subcomponent, will end up
hiding both, because of the name prefix. For example, the DynTFTItems component has an
"ActiveFont" property. This is also displayed on a DynTFTListsBox as "Items^.ActiveFont".
Because of the "Items^." prefix, when selecting both components, these properties will not be
displayed on the object inspector.

The design time properties are the ones which are not part of the component's data type
structure, but control the behavior while designing and generating code.

When placing a new component on the drawing board, its properties are initialized to their
default values, as defined in the schema file of that component. If a run time property is modified by
user, then assignment code for that property is going to be generated. This is also the case for
indirectly modified read-only properties (see below).

Some of the property values are validated at design time, to avoid generating uncompilable
code. Others are left unvalidated on purpose, to allow the freedom of assigning everything the user
wants. Based on their datatype and name, some properties have different local editors (Edit,
ComboBox, ColorBox). For those which use combo boxes or color boxes, they come preloaded
with a list of available constants. Unfortunately, these constants are not grouped, like values of an
enumeration, so all of them will be displayed in the same list.

9

Although useful, the application does not validate string length or number of items of a
property. When a string property contains a value, longer than what the field of the DynTFT
component data structure allows, it will generate a compilation warning, like: "String constant
truncated to fit STRING[19]". Users will have to keep track of these warnings and prevent such
cases, to not allow memory corruption on the microcontroller application.

5.2 Common properties
The "ObjectName" property defines the name of the DynTFT component at code generation

and has to be unique, because all of these names will become variables, part of the same namespace.
The variables, pointing to the actual DynTFT components at run time, are generated in the
DynTFTGUIObjects.pas file. For components, which have no properties to be set in the DynTFT
project at run time, by the user code, there is an option for skipping generating a variable in the
DynTFTGUIObjects.pas file. This is controlled by the "HasVariableInGUIObjects" property. When
set to False, a local variable is generated in the associated "CreateGUI_Screen" procedure from the
DynTFTGUI.pas file. Most of the times, this results in smaller flash and RAM usage for the
microcontroller application. If no property is set for such a component, none of its fields will be set
in the "CreateGUI_Screen" procedure, so a variable will be generated and cause a compiler
notification, for being assigned but not used further.

When the "CreatedAtStartup" property of a component, is False, no code is generated for
that component, although present on the drawing board. This is to allow users to create that
component manually when needed and preview how it will look like. As a limitation, the
initialization / component content code is still generated in DynTFTGUI.pas file, and not available
in DynTFTGUIHandlers.pas.

The "Locked" property controls the editing of position and size of a component, at design
time. When set to True, the component can't be moved or resized. However, the component can be
cut and pasted to a different location even when locked.

The "ActiveFont" property allows setting a different font to a component. The "ActiveFont"
field of a DynTFT component data structure, is available only when the "DynTFTFontSupport"
compiler directive is present in the DynTFT project, and only for components which display text.
Because it depends on compiler directives, the property name is displayed in italic and has the
"<with directive>" suffix in object inspector. Also, its value is displayed in red. By default, it is set
to "@TFT_defaultFont". To set a new font, it must be first created in the Project Settings dialog (see
"Tools" item of the main menu). After creating the new font, it will be available in the selection list
of the "ActiveFont" property in object inspector. Notice the "@" used in front of the font constant
name. This is because the generated code contains this value, unmodified. When the
"UseExternalFont" compiler directive is defined in a DynTFT project, the "TFT_Set_Ext_Font"
function is used, so the value of "ActiveFont" properties might have to be set to a value without
"@". There is no automatic switching between these two options and DynTFTCodeGen does not
keep track of the "UseExternalFont" compiler directive. This property might be present with a
suffix in object inspector, if it is part of a subcomponent.

Using the "MinWidth", "MinHeight", "MaxWidth", "MaxHeight" properties, the size of a
component can be constrained at design time. When these properties are set to 0, they have no
effect.

Other properties like "Count", "AllButtonWidths", "AllButtonLefts", "PageCount", are
component specific and are modified/updated by the application, either at design time or at code
generation. They are set to read-only in their schema files, to avoid being used at design-time. For
example, the "AllButtonWidths" property is a list of integers with the "Width" values of all buttons
from a PageControl. It is internally updated, based on the component configuration. Properties like
these are required at code generation when there is custom initialization code in the schema files.

10

5.3 Editing event handlers
Event handlers can be edited from the second tab of the object inspector. By double clicking

in the "Value" column, for a particular event, a new event handler name will be generated. Based on
their datatype (handler header definition), multiple events can be assigned to the same handler. The
available list, when adding or modifying a handler may contain handler names, which are not
assigned. They will be discarded when closing the project. However, when generating the output
files, these unassigned handlers will also be generated and will have to be manually removed if not
needed. They are not automatically removed, because users may want to assign them manually for
dynamically created components.

6. Screens
As mentioned before, components are organized into screens, so they won't be displayed all

at once. Screens can be added, removed and edited either from the pop-up menu of the list of
screens (the tab buttons above the drawing board on the main window) or the "Edit"->"Screen"
items of the main menu. Also from here, screens can be set to Active/Inactive and
"Persisted/Not persisted. A component, belonging to a screen can be easily moved to another screen,
by modifying its "ScreenIndex" property in object inspector. This is available at design time only
for now.

The active/inactive setting of a screen is used at application startup in a DynTFT project, as
an initialization value for the "Active" field of the "DynTFTAllComponentsContainer" array (see
"SetScreenActivity" procedure in a DynTFTGUI.pas file).

The "Persisted" setting allows displaying components of one screen when other screen is
currently selected. This is a design time setting only.

Screens can have a background color and be set to draw a "clear screen" rectangle at
application startup. In addition to the "Active" and "Persisted" settings, the screen editor, displayed
in the following screenshot, also allows setting the screen color. This screen color is also used at run
time when dynamically deleting components or repainting different areas of the screen. The color
can be set to one of the predefined colors or to a DynTFT color constant. Setting to a DynTFT color
constant, the screen color is automatically updated when a color theme is used.

For applications with many screens, DynTFTCodeGen allows searching for a particular
screen by its name. This is available either from the pop-up menu of the screen, or the main menu.
By clicking the "Search for screen..." item, a small pop-up dialog opens, with a list of screens and
two search boxes (see the following screenshot). Users can type in either the screen number or the
screen name. To go to the desired searched screen, just double click on one of the items in the list.
This will change the current screen and dismiss the dialog.

The screen name is not part of a namespace, it is simply a design convenience, so there is no
restriction in having two or more screens with the same name.

11

There are also few screen related settings on project settings dialog, which will be discussed
later, in another chapter.

7. Application level settings
Accessing general application settings can be done from the main menu, "Tools" ->

"Application Settings...". A small dialog opens, as in the following screenshot:

The "Min Drag To Unlock [px]" editbox allows setting the minimum number of pixels the
mouse has to move when dragging a component, to actually start the moving operation. The default
value is 5 pixels and this feature can be switched off by setting it to 0. When set to 0, a component
is dragged by mouse immediately as the mouse moves. This setting prevents accidental dragging of
a component when clicked. Its maximum value is restricted to 10px. If that is still too small for a
very sensitive mouse, the components can be locked.

The list of recent files, under the main menu, "File"->"Open recent project" item, contains
all files loaded or saved by the application. Over time, some of them may be deleted, renamed or
moved on disk, so they can be displayed as disabled, using the "Display Non-existent Files As
Disabled" checkbox.

For the drawing board, there are currently four options, under the "Drawing Board" group
box. There are three "Focus.." checkboxes, for the drawing board, object inspector and component
palette. When checked, one of the three mentioned components is automatically focused when
hovered by mouse. This is especially useful for the drawing board, because various operations like
Copy/Cut-Paste, moving components, resizing components, selecting component etc, are active
only when the drawing board is focused. When another component is focused, the drawing board
loses focus, so its keyboard shortcuts won't be available. When the "Focus Drawing Board On
Mouse Enter" checkbox is unchecked, the drawing board will have to be focused manually by a
mouse click. The other two "Focus.." options are mainly for causing the drawing board to lose
focus.

12

When dragging a component from the component palette to the drawing board, the drawing
board can be highlighted with an extra border. This can be switched off by unchecking the
"Highlight Drawing Board Before Component Drop" checkbox.

These general application settings are saved to the DynTFTCodeGen.ini file when closing
the application.

8. Project level settings
Every project can be customized with a multitude of settings, from the "Project Settings"

dialog, accessible from the main menu, "Tools" -> "Project Settings...". See the following
screenshots:

The dialog consists of multiple pages, "Fonts", "Code Generator (Main) / (Init code) / (Binary
components)". Other settings, like the screen settings, are not included in this dialog.

13

8.1 Font settings
From the first page of the dialog, fonts can be added, edited and removed from a project.

They have to exist in a project prior to being used as values for the "ActiveFont" property of various
DynTFT components.

To add a new font, either browse system fonts, using the "..." button, under the "System Font
Setting" groupbox, or manually type a font name in the "Font Name" editbox. Set its options under
the same groupbox, then give it a name in the "Property Value" editbox. This name will appear as an
option when setting the "ActiveFont" property of a component. It can also be preceded by the "@"
character if fonts will be included in the DynTFT project as internal fonts. After filling in all these
settings, press the "Add" button. The new font should be added to the list. As an example, the
default font can be added from the "Add Default" button. This will add "@TFT_defaultFont" as
Tahoma, 10, bold. It has to be mentioned that adding the default font to a project is not needed,
because it automatically exists and is used by default. However, if added and customized, all
components which use it, will display the new font settings. This is useful when using custom TFT
libraries, which either hardcode the default font settings or allow the font to be customized.

Updating an existing font, requires the font to be selected in the list, its new changes to be
set, from the "System Font Setting" groupbox, then the "Update" button to be pressed. Deleting a
font can be done from the "Delete..." button if selected in the list.

When selecting a font which does not exist, as a value for the "ActiveFont" property, the
application will display a striked out small font. See the following screenshot:

This can happen either after removing a font from the list, or typing in a non-existent font.
As mentioned before, switching a DynTFT project from internal to external fonts, using the

"UseExternalFont" compiler directive, may require removing the "@" prefix from font property
values. There is no automatic means of doing this, so font settings will have to be updated manually.
The same for components.

8.2 Code generator (Main) settings
On the "Code Generator (Main)" tab, from the "Project Settings" dialog, various options are

available. There are three group boxes, "Numeric Colors", "Output Files" and "Screens
Initialization".

The "Color" and "Font_Color" properties of DynTFT component, can be assigned to color
constants or their numeric counterpart, in hexa format. DynTFTCodeGen works with 32-bit colors
(the most significant byte is not used), in BGR format, as provided by the operating system. Color
constants are defined in the DynTFTConsts unit, for the desktop simulators and the TFT library for
the microcontroller applications. In addition to that, theme specific colors are defined in their color
themes as well. All these constants are declared in two ways, 32-bit (BGR) and 16-bit (RGB).
DynTFTCodeGen can generate code for assigning "Color" and "Font_Color" properties with any of
these options. The "Generated value format" group box allows selecting between a switch of 32-bit
vs. 16-bit values for desktop vs. MCU code, and 32-bit only. When selecting the first option,
"{$IFDEF IsDesktop} $<BGR_32> {$ELSE} $<RGB_16> {$ENDIF}", the generated code

14

contains both versions of the color, in 32-bit and 16-bit format. For desktop, it will use 32-bit and
for the microcontroller, the 16-bit one, as specified by the "IsDesktop" compiler directive. This
compiler directive can be changed from the "Compiler Directive" edit box, but for now, this is the
name the DynTFT library supports. It has to be mentioned that the same compiler directive is used
when generating code for the "ActiveFont" property, between desktop simulator and MCU project.

The second option of the "Generated value format" groupbox configures the code generator
to generate only 32-bit values. This is desired when using custom libraries, which support 32-bit
colors. The last setting in this group box is the "Swap RGB", which causes the code generator to
generate all color values with red and blue channels being swapped. This may also be the case for
custom TFT libraries.

The "Output Files" group box, allows setting the output directory for the four output files,
DynTFTGUI.pas, DynTFTGUIObjects.pas, DynTFTHandlers.pas and DynTFTFonts.pas. In
addition to the three .pas files used by DynTFT projects in the previous DynTFT versions, there is
one new file, called DynTFTFonts.pas, which is used for the DynTFT simulators only. The output
directory can be relative to the project file, or it can have an absolute path. For relative path, the
application can't properly handle network locations. According to the path settings, the "Preview
Path" listbox displays the actual path of the output files. It will display actual path only when the
DynTFTCodeGen project is saved.

By unchecking the "Generate DynTFTHandlers.pas" checkbox, the DynTFTHandlers.pas
will not be saved/modified by DynTFTCodeGen.

The last setting in the "Output Files" group box, is the "Components Registration". It is used
when generating the "RegisterAllComponentsEvents" procedure from the DynTFTGUI.pas file.
Every registered component increases code size in the final microcontroller application, so
commenting out unused registration function, helps decrease the size. DynTFTCodeGen
automatically sets various components to "checked", in this list, if they are used in the project or
they are dependencies of used components. Users can additionally check components if they know
they will be created dynamically at run time, instead of being handled by DynTFTCodeGen. When
a simulator displays an exception like Exception while executing
DynTFT_GUI_LoopIteration: PDynTFTMessageBox was not registered. Please call
RegisterMessageBoxEvents before creating a PDynTFTMessageBox. It should be

called once in RegisterAllComponentsEvents procedure from DynTFTGUI unit., then a
component registration is missing, which can be added from the "Components Registration" list.

From the last group box, "Screens Initialization", users can choose to clear the screen with a
rectangle, at application startup. This can be done by checking the "Clear Screen On Startup"
checkbox. The "clear screen" color is selected from the remaining controls. When the "Color From
Existing Screen" radio button is selected, the color used comes from one of the available screens.
For the "Custom Color" option, users can use any of the available color constants, or a custom
color.

8.3 Code generator (Init code) settings
The code generator can add special code for creating and destroying components at runtime,

under user control. This is done by grouping various components together under "creation groups",
mentioned by their "ManualCreationGroup" property. Users just have to type in a new or existing
group name in that field and set the "CreatedAtStartup" property to False. For these components,
the user can call their creation or destruction code when needed, not at startup as for the others. This
code is placed under "CreateGUIGrp_<GroupName>" and "DestroyGUIGrp_<GroupName>"
procedures, in DynTFTHandlers.pas unit. These procedures can be called, for example when
changing the active screen, to destroy some existing components and create new ones.

The settings under the "Code Generator (Init code)" tab from the Project Settings window,
allow editing group names and even generate code for calling the creation code at UI startup.

15

8.4 Code generator (Binary components) settings
For a better understanding of the "binary components" set of settings of the code generator,

see chapter 10. This section is mostly about the settings available on the dialogbox.
Every targeted compiler is required to have one settings profile, to use RTTI instructions.

This is required, because every project can have its own set of compiler directives, used as feature
toggles in DynTFT library, and also because event handlers will have different memory addresses
across projects/compilers/architectures

The upper section of the tab is a list of settings profiles, its add/update/remove buttons, a
profile name editbox and two timer settings for scanning .lst files. The list of profile names displays
all available profiles in the current project. By clicking on one profile from the list, its settings are
displayed. The profile name (see "Profile Name (+ directive)" editbox) has to follow syntax
identifier rules, because it is also used as compiler directive for profile related code. The "Scan Lst
File Interval [ms]" editbox specifies the interval used when scanning lst files for modifications. The
lst scan timer is active when the "Scan" checkbox is checked. There is only one timer for all
profiles. Except these two timer settings, all the other settings on the " Binary components" tab,
belong to a profile.

Adding new profiles and updating existing ones, using the "Add" and "Update" buttons, will
add/update them, using the current settings from the "Selected Profile - <ProfileName>" groupbox.
Click on Add button to add the current settings as a new profile. Click on Update button to update
the selected profile with the current settings. Click on Remove, to delete the selected profile.

Under the "Selected Profile - <ProfileName>" groupbox, there are settings for generated
output files: "Generated files with binary components (*.dyntftui)" groupbox, input data: "Location
of instructions" groupbox, data type bitness: "Integer Size" and "Pointer Size" groupboxes, property
addresses location: "Property Addresses Source" groupbox, paths settings: "Paths Type" groupbox,
path to lst file, path to compiler directives file, name of data provider callbacks and a compiler
directive setting editbox.

- Use the "Filename (instructions to create)" editbox, to specify the .dyntftui file, which will
be generated by DynTFTCodeGen, with RTTI instructions to create and set components.

- Use the "Filename (instructions to destroy)" editbox, to specify the .dyntftui file, which
will be generated by DynTFTCodeGen, containing RTTI instructions to destroy components.

- From the "Location of instructions" groupbox, users can specify how the instructions will
be stored. There are two available options: in code, and in .dyntftui files. When using code,
instructions are stored as two constant arrays, one for creating components / setting properties, and
the other for destroying components. For projects, which do not have manual creation groups, i.e.
components are created once, at startup, there is no need to generate destroy instructions, so the
"Const array (Destroy)" checkbox may be left unchecked. It is however, required for the
"Const array (Create)" checkbox to be checked, to generate create/set instructions in code. When
checking the "External files (*.dyntftui)" checkbox, two .dyntftui files are generated, one for
creating/setting components, and the other for destroying components. Although the .dyntftui files
are created, they won't be used, unless callbacks (one for each file, create and destroy) are provided
in code, and their names configured into the "Data provider callback (create)" and "Data provider
callback (destroy)" editboxes. Different files have to be configured across settings profiles, to avoid
overwriting them.

- Use the "Integer Size" and "Pointer Size" groupboxes to configure the bitness of the
targeted architecture. Each of the two groupboxes, has three available options, 16-bit, 32-bit, 64-bit.
For example, Integer data type is 16-bit on PIC24/dsPIC and PIC32, and is 32-bit on Desktop x86.
On Desktop x64, Integer would be 64-bit. The pointer size does not have have to match Integer data
size. It can be 16-bit or 32-bit on PIC24/dsPIC, depending on how the "TPtr" data type is defined in
DynTFTTypes.pas from the DynTFT library, it is 32-bit on PIC32 and Desktop x86, and is 64-bit on
Desktop x64. Proper configuration of these two datasizes is required, for each profile, because this

16

directly affects settings properties of Integer, Boolean and PByte (pointer) types. Boolean properties
are assumed to be of pointer size, except on x64, where they are used as 32-bit. Because of this,
properties of Boolean type are defined as LongBool in DynTFT components. If not configured
properly, data can be truncated or undesired memory locations will be overwritten (i.e. memory
corruption) when setting properties, during RTTI instruction execution.

- Event handlers and fonts, used as PByte type (and maybe other future data types) can be
encoded either directly, specifying their addresses (obtained after compiling and linking), or by
placing them into an array, and indexing that array at runtime. The "Property Addresses Source"
groupbox has two available options for this. One is to read the addresses from the generated .lst file
and the other is to generate an array of event handlers and fonts, as part of the code.

When using the .lst file, event handler and font addresses are written to the .dyntftui files or
the generated constant array of instructions (not to be confused with the above mentioned array of
addresses), as they are found in the .lst file. It has to be mentioned that there may be multiple
compile/generate cycles needed to properly synchronize these contents, because DynTFTCodeGen
does not have at every code generation, all the required addresses. These would be available only
after generating the .lst file, which requires all source files to be generated (chicken and the egg
problem). Nonetheless, multiple compilations of the same project, will eventually result in the same
placement of the event handlers and fonts, i.e. same .lst file content across two consecutive
compilations. The inconvenience caused by multiple compilations can be payed off by the fact that
this option results in the smallest code size among all the available settings. It has to be mentioned
that the desktop simulators must also generate a .lst file if using this option. The DynTFT library
provides the DynTFTListExporter.pas unit, and DynTFTCodeGen automatically generates code
required by this unit. The downside is that on desktop, addresses are not available at compile time.
Because of this, the simulator has to be started, to generate/update its .lst file.

The option to generate code with all event handlers and fonts into an array, and read their
addresses at runtime is a bit more convenient, because there is no need to synchronize the generated
files with the resulted .lst file, i.e. no need for multiple compilations to get the addresses right. This
option has an increased code size, compared to the .lst file option, because of the array of addresses
and the required code to read it. The decision to use hardcoded addresses, or to index handlers and
fonts, is made by the RTTI execution engine, as this information is encoded in each "set property"
instruction. However, DynTFTCodeGen generates only one of the two options at a time.

- Using the "Path To Project Compiler Directives File [.pld; .cfg; .txt; .ctpr]" editbox, each
settings profile can specify what list of compiler directives to use. This is required, because various
component properties depend on compiler directives (e.g. the "Items^.ItemsEnabled" or the
"Items^.OnGetItem" properties of a ListBox). Even fonts depend on "ActiveFont" property of
various components and also on "DynTFTFontSupport" compiler directive. Since these options can
be configured differently across projects, DynTFTCodeGen has to "preprocess" them, to properly
generate instructions only for the available properties. Another requirement of these lists of
compiler directives, is to make sure the profile name, as set in the "Profile Name (+ directive)"
editbox, is also defined as a compiler directive.

- All of the four mentioned paths, specified on this tab, can be configured as absolute paths
or relative to the project file. This is done from the "Paths Type" groupbox. When using relative
paths, the project has to be saved, so that DynTFTCodeGen would know what project filename to
use. Network paths may not be supported as relative paths.

- Every profile will also need to specify if it targets Desktop or MCU, using the "Compiler
Directive For Desktop or MCU" editbox. Right-click on this editbox for suggestions.

- As mentioned before, to use .dyntftui files, the names of two callbacks have to be specified
to the "Data provider callback (create)" and "Data provider callback (destroy)" editboxes.

More information about the above settings, can be found in component tooltips. Just open
the dialog and hover every component with the mouse.

17

9. Code generation
Many features of the code generator were mentioned in previous chapters, leaving here the

most specific ones. The code generator is able to fully generate all four files, DynTFTGUI.pas,
DynTFTGUIObjects.pas, DynTFTHandlers.pas and DynTFTFonts.pas and to edit the already
existing DynTFTHandlers.pas file. The first three files are included in a DynTFT microcontroller
project, via the DynTFTGUI.mpas, DynTFTGUIObjects.mpas, DynTFTHandlers.mpas files. The
last one, DynTFTFonts.pas does not have a microcontroller counterpart, because it is needed at
desktop only.

Editing the DynTFTHandlers.pas file means adding event handlers, both in the interface
section as the headers, and in the implementation, their implementation code. To identify various
sections of the file, and allow proper code inserting, the application uses "code generator symbols".
These are strings, added to the headers of procedures/functions and also to their "begin" and "end"
keywords. They come as comments at the end of a line, and look like "//CodegenSym:header",
"//CodegenSym:handler", "//CodegenSym:handler:begin" and "//CodegenSym:handler:end".
Please do not remove these strings, to allow proper application functioning!

As mentioned before, DynTFTCodeGen does not keep track of various DynTFT project
settings, defined by compiler directives, so they will have to be manually managed. Parts of the
generated files come from the "OutputParts" files from the \OutputParts directory, allowing future
project customizations. Users can even install DynTFTCodeGen into separate directories with
different "OutputParts" files, depending on application needs. For most of the cases, include files
(*.inc) can be used to add custom units and raw code.

Custom TFT libraries can be used when the DynTFT project defines the
"UserTFTCommands" compiler directve. As mentioned before, color themes have to be manually
configured, DynTFTCodeGen allowing only to preview them.

10. RTTI and binary representation of UIs

DynTFT features a runtime type information mechanism for design components, which
allows loading of UIs from an external medium. Type information is kept to a minimum, because of
memory limitations in microcontrollers. It includes component registration index, which identifies
used component types within a design, and component property regsitration index, which identifies
properties within a component type. Using type information, UI descriptions can be binary encoded
for both better compression of initialization code, and storing UIs on external media.

10.1 Overview of RTTI and binary components
Storing UIs in binary format can be done either as constant arrays in code, or as two files on

an external medium. Such an UI is represented as a stream of instructions, used to create or destroy
components and to set component properties. To recreate an UI from this content, a small execution
engine is called at application startup and/or on demand (user code), which can create components
and set their instructions. Also on demand, it can destroy components (see manual creation groups).
Throughout the DynTFTCodeGen application, these instructions are called "RTTI instructions",
because they depend on type information to work with components in a generic way.

DynTFTCodeGen is able to generate mixed UIs, i.e. containing old fashioned code (e.g.
MyComponent := PmyDynTFTComponentType.Create(<arg>..<arg>);) and similar information,
encoded as binary. The encoding granularity is at component level, by setting the boolean property,
"UseBinaryEncoding" for desired components.

Working with RTTI and binary encoded UIs, requires defining the RTTIREG compiler
directive in a DynTFT project. The generated code uses this directive for backward compatibility.

18

"Binary components", i.e. those which have the "UseBinaryEncoding" property set to True, will not
be created in a project which does not define the RTTIREG compiler directive. Another similar
requirement is to define a settings profile for each DynTFT project, which uses RTTI. This can be
done from the project settings dialog, "Code Generator (Binary components)" tab. Without a
settings profile, components marked as binary, will not revert to the non-RTTI creation code.

The limitations of binary encoded instructions come from DynTFTCodeGen, the DynTFT
library itself, programming language compatibility and support, speed and size optimizations and
also from hardware.
Here are some of the limitations of binary encoded UIs:

- maximum number of components: 32767 (limited by indexing with 16-bit integer)
- maximum number of component types: 128 (limited by instruction encoding)
- maximum number of properties / component type: 128 (limited by instruction encoding)
- maximum number of bytes in a string: 255 (limited by instruction encoding and

constrained strings on desktop application – library limitation)
- minum buffer size on loading content from file: 256 bytes (required by instruction

encoding and setting string properties)
- maximum number of manual creation groups: 31 (limited by instruction encoding)
- maximum number of event handlers: 231 – 1 (further limited by compiler and memory)

Also as a limitation, a generated binary UI, has to match the runtime registration code (see
"RegisterAllComponentsEvents" procedure from DynTFTGUI.pas, which is generated by
DynTFTCodeGen). Similar to this, are component properties and event handlers. It has to be
mentioned that event handlers are not binary encoded. Their code/content is kept as before, but they
are simply assigned to event properties, using binary encoded information. Since event handlers are
special type of properties, they can be encoded either as an index of an actual event handler address
from an array of addresses, or can be encoded as the address itself when available. Like event
handlers, font addresses are also encoded in the same way.

Another type of limitation comes from various combination of code generation options, like
manual creation groups and the "CreatedAtStartup" and "HasVariableInGUIObjects" properties of a
component. When using manual creation groups, the RTTI execution engine is called from the
"group procedures" in addition to the startup code, to allow creating and destroying components
like before. Components which are part of a creation group and also have both the
"CreatedAtStartup" and "HasVariableInGUIObjects" properties set to False, will not be created.
A component, which does not have a variable to hold its object, if created, will not be able to be
destroyed, because there is no variable to point to that object. Components, which have the
"HasVariableInGUIObjects" property set to False and "CreatedAtStartup" is set to True, are
expected to be created and never destroyed. Regardless of these settings, these components will be
part of the generated instructions, which can be either executed or ignored.

Using RTTI, is more of a memory and code size overhead than processing power, but
nonetheless, it provides smaller code size of the same UI and also the possiblility of storing it on
external media. For big UIs (i.e. many components and design-time assigned property values), the
RTTI engine is smaller that the UI itself, resulting in an overall decrease of code size, compared to a
non binary UI. For smaller UIs, there is no benefit of using RTTI.

10.2 Location of instructions and Property Addresses Source
As also mentioned in the description of the settings dialog, RTTI may use different arrays in

code, depending of selected settings. Instructions can be generated as .dyntftui files or can be stored
in two constant arrays (see C_RTTI_CreateInstructionData and C_RTTI_DestroyInstructionData
constants in a generated DynTFTGUIObjects.pas file). Another array, mentioned accross this

19

documentation is a variable (see AllBinHandlers in a generated DynTFTHandlers.pas file),
containing the addresses of event handlers and fonts, to be read at runtime by the RTTI execution
engine. The AllBinHandlers array is used only when the "Property Addresses Source" groupbox is
set to "array of addr (run time)". In this case, each "set property" instructions, which targets an event
handler or font, will contain the index of that event hander or font in the AllBinHandlers array. This
option is available for both the .dyntftui files and the constant array of instructions for creating and
setting components, C_RTTI_CreateInstructionData.

Using the generated .lst files, to get the addresses of event handlers and fonts, is the most
efficient encoding when looking at final code size, but it is the worst compile time option, because
it requires multiple compilations and manual monitoring of the generated .lst files.

The smallest code size option is to use dyntftui files, stored on an external memory, rather
than using a constant array in code. This is true only for the case, where the application already uses
that external memory (SD card, EEPROM, Flash etc.) for other purposes. The main downside of
using .dyntftui files, is that the external memory has to be connected (e.g. an SD card has to be
present) when executing instructions. Also to be mentioned, is the fact that on MCU, if using short
filenames (although "dyntftui" is a long extension), results in smaller code size (maybe it matters).

As a limitation, DynTFTCodeGen can generate only one set of instructions per project, i.e.
only one UI per project. This means that an application, which requires multiple UIs to be changed
at runtime, must have multiple projects to generate all the necessary sets of .dyntftui files. However,
it would be easier to group components into manual creation groups and control their creation and
destruction at runtime, while using the same two .dyntftui files.

It has to be mentioned that DynTFTCodeGen does not implement an automation feature for
copying the newly generated .dyntftui files to the storage media (e.g. SD card).

These settings represent a tradeoff between code size, speed and compile time.

10.3 Using lst files
The option of reading event handlers and fonts addresses from .lst files, is the most

demanding when it comes to user effort. This is because multiple compilation / code generation
cycles are needed, to properly update the RTTI instructions (either code constant or .dyntftui files),
to match the addresses of the compiled event handlers and fonts. The effort comes from the fact that
on every UI change, which involves a regeneration of output files (.pas files and/or .dyntftui files),
the projects across all targeted architectures, have to be rebuilt. As a result of rebuilding the projects
(also starting the desktop simulators), their .lst files are updated with the proper addresses of event
handlers and fonts, but most likely, they do not match the addresses, which DynTFTCodeGen used
to generate the instructions. This is displayed both on DynTFTCodeGen's status bar and its
messages dialog (can be shown from main menu -> Tools -> Display Code Generation Messages),
as mismatched addresses. If this is the case, the output files (.pas files and/or .dyntftui files) have to
be regenerated, to contain the latest addresses. Regenerating these files, requires another rebuild of
the projects (only some projects may report mismatching addresses). Rebuilding the projects may or
may not result in placing the event addresses and fonts at different addresses than before. At this
point, if they are placed at new adresses (again), either multiple rebuilds (and starting the
simulators) would be needed, or another code generation would be required to adapt to the new
reported addresses. DynTFTCodeGen does not implement an automation mechanism to run the
compilers, based on the reported mismatched addresses.

As mentioned in the description of the project settings dialog, DynTFTCodeGen implements
a .lst scanning feature, using a timer. This timer can be configured from the setting dialog and
should be enabled to allow looking for .lst file changes. It works by keeping track of the .lst files
timestamps, across settings profiles and it opens these files only when their timestamps are changed
(i.e. files are updated). The timer stops when closing a project and restarts if opening a project,

20

which is set to run the timer.
Users have to make sure that after generating the output files (.pas files and/or .dyntftui

files), DynTFTCodeGen may report that all addresses are the same across its in-memory content
and the verified lst file(s). However, a project rebuild is mandatory (and also running the desktop
simulator(s)), to make sure the new changes will take effect, i.e. the existing lst file, used for
creating the RTTI instructions, will be updated accordingly to the executable (.hex / .exe).
Rebuilding/regenerating files have to be done until there are no more reported mismatching
addresses in the messages dialog / status bar.

As already mentioned above multiple times, the desktop simulators have to be started, to
update their .lst files, in addition to being compiled. This is because on desktop, addresses can't be
properly obtained at compile time, as opposed to MCU. A GenerateListFile call has to exist on
every desktop simulator, which has to generate a .lst file, and also to include the provided
DynTFTListExporter.pas from the DynTFT library.

When the option of using .lst files, is desired, it is recommended to work on the design using
another option (like placing addresses in the AllBinHandlers array), then switching to the .lst option
from time to time, to see how it performs.

10.4 Setting compiler directives
To use RTTI instructions, multiple compiler directives are required. Some of them have to

exist in all projects, others only particular to a project. For example, to enable the RTTI feature in
the DynTFT library, the RTTIREG compiler directive has to be defined at project level.
DynTFTCodeGen verifies if this directive is defined in the configured projects and reports an error
if not found. As a limitation, it verifies only when generating files.

From the project settings dialog, settings profile names can be configured. These names are
also used as compiler directives, particular to a project. This is required, because DynTFTGUI.pas,
DynTFTGUIObjects.pas, DynTFTHandlers.pas, and DynTFTFonts.pas, are common for all
projects in a DynTFTCodeGen design. The RTTI related code from these files is generated in
multiple "copies", enclosed by profile names as compiler directives. They have to be unique, to
properly compile. As with the RTTIREG directive, DynTFTCodeGen also verifies the existence of
the profile names as compiler directives. At least for Delphi, adding compiler directives to the
project, has to be made from the IDE, not by directly editing the .cfg file. This is because
DynTFTCodeGen verifies .cfg files only, while Delphi may rely on project files (.bdsproj / .dproj).

Another set of compiler directives is configured from the "Compiler Directive For Desktop
or MCU" editbox from the project settings dialog. Every profile has to specify, using this directive,
if targets desktop or MCU. Two values are supported for now, "{$IFDEF IsDesktop}" and
"{$IFDEF IsMCU}".

10.5 Miscellaneous
As mentioned before, to use .dyntftui files, two callback procedures must be implemented,

and their names have to be specified in the project settings dialog ("Data provider callback (create)"
and "Data provider callback (destroy)" editboxes). They can be implemented in a separate unit, and
this unit would have to be included in the uses section of DynTFTHandlers.pas file, via the
DynTFTHandlersAdditionalUnits.inc file. In most of the cases, either using an SD card or another
tpye of storage, this storage medium has to be initialized and the files be already open for when the
RTTI instruction execution engine would be run. If using both create and destroy instructions in the
same UI (e.g. when creating/destroying components from manual creation groups), two files would
have to be open at the same time. If only create instructions are used, a single file would suffice.
Also, make sure to close the file after UI initialization, if not using manual creation groups.

21

Here is an example of two callbacks, using FAT32 library:

procedure RTTICreateCallback(ABinaryComponentsData: PDWordArray; ByteCount: TPtr);
begin
 if ByteCount = 0 then
 //Reset to the first instruction! (can be > 0 if using header)
 FAT32_Seek(RTTI_Create_Handle, 0)
 else
 if FAT32_Read(RTTI_Create_Handle,
 PByteArray(TPtr(ABinaryComponentsData)),
 ByteCount) = -1 then
 begin
 //stops execution, if this is the first DWord of an instruction
 ABinaryComponentsData^[0] := 0;
 {$IFDEF IsDesktop}
 DynTFT_DebugConsole('Reached end of file, or file not found in RTTI create.');
 {$ENDIF}
 end;
end;

procedure RTTIDestroyCallback(ABinaryComponentsData: PDWordArray; ByteCount: TPtr);
begin
 if ByteCount = 0 then
 //Reset to the first instruction! (can be > 0 if using header)
 FAT32_Seek(RTTI_Destroy_Handle, 0)
 else
 if FAT32_Read(RTTI_Destroy_Handle,
 PByteArray(TPtr(ABinaryComponentsData)),
 ByteCount) = -1 then
 begin
 //stops execution, if this is the first DWord of an instruction
 ABinaryComponentsData^[0] := 0;
 {$IFDEF IsDesktop}
 DynTFT_DebugConsole('Reached end of file, or file not found in RTTI destroy.');
 {$ENDIF}
 end;
end;

The values of RTTI_Create_Handle and RTTI_Destroy_Handle variables would be returned by calls to
FAT32_Open function. The way these callbacks are called, depends on the data they provide.
Typically, a call with ByteCount set to 0, would be made at the start of any batch of instructions.
This is to reset the file pointer to the first instruction. The above examples assume that .dyntftui
files contain no header, so the first instruction would be located at offset 0. For every create/set
instruction, a call with ByteCount set to 4, would be made, to fetch a new instruction, then another
call with ByteCount set to the length specified by the instruction, to get its content. In case of a read
error, the returned value has to be set to 0, to stop the execution.

11. Additional units in DynTFT projects
In addition to generating DynTFTGUI.pas, DynTFTGUIObjects.pas, DynTFTonts.pas and

DynTFTHandlers.pas from scratch, DynTFTCodeGen can edit an existing DynTFTHandlers.pas up
to a certain extent, making sure user code is preserved. It expects that user code would be placed in
DynTFTHandlers.pas , only inside generated event handlers (this includes adding local variables).
The other parts of the code from DynTFTHandlers.pas , are almost completely regenerated at every
editing operation by DynTFTCodeGen. When users have to provide additional code, which has to
be used from implemented event handlers, the available options are to include new units in the uses
section of DynTFTHandlers.pas , using "DynTFTHandlersAdditionalUnits.inc" or including the
code via another include directive/file, "DynTFTHandlersAdditionalCode.inc". DynTFTCodeGen
always expects that, if using DynTFTHandlersAdditionalCode.inc, it has to be defined as

22

{$I DynTFTHandlersAdditionalCode.inc} , two lines after the line containing the "imlementation"
keyword from DynTFTHandlers.pas file, with no other content in between and no indentation:

//...
//CodegenSym:AllBinHandlersEnd

implementation

{$I DynTFTHandlersAdditionalCode.inc}

//CodegenSym:UpdateBinHandlersProcBegin
//...

When placing procedures and functions inside DynTFTHandlersAdditionalCode.inc file, which
have to be visibile from other units, their headers will have to be added to
DynTFTHandlersAdditionalCodeInInterface.inc and the "UseHandlersAdditionalCodeInInterface"
compiler directive be defined at project level.

In the case of using different TFT libraries, rather than the provided mikro one, they can be
added to the uses section, with their names defined in UserDrawingUnits.inc file. To include this
file, the "UserTFTCommands" compiler directive has to be defined at project level.

 {$IFNDEF UserTFTCommands}
 {$IFDEF IsDesktop} , TFT {$ENDIF}
 {$ELSE}
 , {$I UserDrawingUnits.inc}
 {$ENDIF}

 {$I DynTFTHandlersAdditionalUnits.inc}
 ;

 {$IFDEF UseHandlersAdditionalCodeInInterface}
 {$I DynTFTHandlersAdditionalCodeInInterface.inc} //external functions, vars, consts
 {$ENDIF}

The DynTFTHandlersAdditionalUnits.inc file can also be used to include files containing
"external resources", required by a DynTFT project, e.g. font definitions. For example, if a font is
defined in a file, called ExternalResources.mpas , it can be included like this:

{$IFNDEF IsMCU}
 , ExternalResources
{$ENDIF}

It has to be included for MCU only, because on desktop simulators, fonts are already defined in
DynTFTonts.pas file.

In the current version, DynTFTCodeGen does not update the beginning section of
DynTFTHandlers.pas file, which contains all these directives and include statements. Because of
this, the beginning section of existing DynTFTHandlers.pas files would have to be manually
updated to the latest version from DynTFTHandlers_Beginning.txt file from DynTFTCodeGen's
OutputParts directory (mentioned in chapter 2).

23

