geomagnetic  2.0.0.0
Main Page

GeoMagnetic click

GeoMagnetic click is a digital magnetometric click board which can measure the geomagnetic field in three perpendicular axes. The onboard sensor uses FlipCore - a proprietary technology from Bosch, which results with a carefully tuned performance, tailored for demanding 3-axis mobile applications, such as a tilt-compensated electronic compass, gaming controllers, augmented reality applications and similar applications which require reliable and precise 3-axis magnetometric measurement.

click Product page


Click library

Software Support

We provide a library for the Geomagnetic Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Geomagnetic Click driver.

Standard key functions :

Example key functions :

Examples Description

This example showcases how to initialize and configure the logger and click modules and

measure and display the data later on.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and click modules.

{
log_cfg_t log_cfg;
// Logger initialization.
log_cfg.level = LOG_LEVEL_DEBUG;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
GEOMAGNETIC_MAP_MIKROBUS( cfg, MIKROBUS_1 );
geomagnetic_init( &geomagnetic, &cfg );
geomagnetic_default_cfg( &geomagnetic );
}

Application Task

This function first checks whether the device is ready to start measuring and after that

collects and displays data from all three axes every half a second.

{
GEOMAGNETIC_RETVAL ready_check;
int16_t axis_x;
int16_t axis_y;
int16_t axis_z;
int16_t resolution_hall;
ready_check = geomagnetic_check_ready( &geomagnetic );
while ( ready_check != GEOMAG_DATA_READY )
{
ready_check = geomagnetic_check_ready( &geomagnetic );
}
geomagnetic_read_axis_data( &geomagnetic, &axis_x, &axis_y, &axis_z, &resolution_hall );
log_printf( &logger, "X axis: %d\r\n", axis_x );
log_printf( &logger, "Y axis: %d\r\n", axis_y );
log_printf( &logger, "Z axis: %d\r\n", axis_z );
log_printf( &logger, "---------------------------------\r\n" );
Delay_ms( 500 );
}

Note

The Geomagnetic Click needs to initialize the SPI communication module first, because the

communication interface selection ( on the click ) is locked on to SPI and we need to write some data to the registers in order to configure the click module.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.