semperflash  2.0.0.0
Main Page

Semper Flash click

The Semper Flash Click is a Click boardâ„¢ which features the S25HS512T, a perfect solution for the mass storage option in various embedded applications. With fast performance being one of its key features, Semper Flash click can also be used for the code shadowing, execute-in-place (XIP), data logging and data storage.

click Product page


Click library

Software Support

We provide a library for the SemperFlash Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for SemperFlash Click driver.

Standard key functions :

Example key functions :

Examples Description

This example showcases how to initialize and use the Semper Flash click. The click

is a 512 Mbit SPI Flash memory module. Data can be stored in and read from the flash memory. There's also the option of erasing it's contents. Here's how to do it.

The demo application is composed of two sections :

Application Init

This function initializes and configures the click and logger modules. Additional con-

figuring is done in the default_cfg(...) function. The device ID should appear in the UART console if the setup finishes successfully.

void application_init ( void )
{
log_cfg_t log_cfg;
// Logger initialization.
log_cfg.level = LOG_LEVEL_DEBUG;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
Delay_ms( 100 );
// Click initialization.
SEMPERFLASH_MAP_MIKROBUS( cfg, MIKROBUS_1 );
semperflash_init( &semperflash, &cfg );
semperflash_default_cfg( &semperflash );
Delay_ms( 500 );
}

Application Task

This function first erases the contents of the flash memory and then writes, reads and

prints two strings in the UART console. It does so every 2 seconds.

void application_task ( void )
{
char write_data_com[ 7 ] = "MikroE";
char write_data_clk[ 13 ] = "Semper Flash";
char read_buf_data[ 13 ] = { 0 };
{
error_handler( semperflash_write_memory( &semperflash, ADRESS_MEMORY, write_data_com, 6 ) );
error_handler( semperflash_read_memory( &semperflash, ADRESS_MEMORY, read_buf_data, 6 ) );
log_printf( &logger, "%s\r\n", read_buf_data );
}
else if ( CLICK_FLAG == txt_flag )
{
error_handler( semperflash_write_memory( &semperflash, ADRESS_MEMORY, write_data_clk, 12 ) );
error_handler( semperflash_read_memory( &semperflash, ADRESS_MEMORY, read_buf_data, 12 ) );
log_printf( &logger, "%s\r\n", read_buf_data );
}
log_printf( &logger, "....................\r\n" );
Delay_ms( 2000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.