c6dofimu6
2.0.0.0
|
6DOF IMU 6 Click features a 6-axis MotionTracking device that combines a 3-axis gyroscope, a 3-axis accelerometer, and a Digital Motion Processorâ„¢ (DMP) labeled as ICM-20689. The ICM-20689 from company TDK InvenSense includes on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The gyroscope and accelerometer are full-scale range, user-programmable sensors with factory-calibrated initial sensitivity for reduced production-line calibration requirements.
We provide a library for the 6DofImu6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for 6DofImu6 Click driver.
void c6dofimu6_cfg_setup ( c6dofimu6_cfg_t *cfg );
C6DOFIMU6_RETVAL c6dofimu6_init ( c6dofimu6_t *ctx, c6dofimu6_cfg_t *cfg );
void c6dofimu6_default_cfg ( c6dofimu6_t *ctx );
void c6dofimu6_default_cfg ( c6dofimu6_t *ctx );
void c6dofimu6_angular_rate ( c6dofimu6_t *ctx, float *x_ang_rte, float *y_ang_rte, float *z_ang_rte );
void c6dofimu6_acceleration_rate ( c6dofimu6_t *ctx, float *x_accel_rte, float *y_accel_rte, float *z_accel_rte );
6DOF IMU 6 Click features a 6-axis MotionTracking device that combines a 3-axis gyroscope, a 3-axis accelerometer, and a Digital Motion Processor.
The demo application is composed of two sections :
Initalizes SPI and I2C drivers, performs safety check, applies default settings and writes an initial log.
Demonstrates the use of 6DOF IMU 6 Click board by reading angular rate, acceleration rate and displaying data to USB UART.
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.