USB HID Host Library

2015-12-04
Content
(Y d o Ye [§ Lot o] o FUUETETE TR 1
USGEE IN @ PrOZIAM ceeeiiiiiiiiiiiteee e e e e ettt e e e e e ettt et e e e eeesaaabebteeeeeasesssbebaeeeessaasssseaaeeeesssanssseaeeeessasansnnes 1
INitialisation and teSt fOr FEAMINESS ...uuuuueeiei bbb e bab b aaasaaaaasasasasasesasasenes 1
Reading and WIiting PACKeLS.ccocuiiii ettt e e e etee e e et ae e e e eabe e e e enareeas 2
RN =Y = Lo I L A T=IL0 1 SN 3
Introduction

This is a library for making an USB host capable of reading and writing 64 byte packets from/to
generic' USB HID devices. At this moment only a version for PIC24 is available.

Usage in a program

Initialisation and test for readiness
The initialisation of the library and test for readiness of the USB HID device is done as follows:

uses USB HOST HID Library, UartDebug;

procedure USBlInterrupt(); iv IVT ADDR USBI1INTERRUPT;
begin

USB_Interrupt;
end;

begin
{ Main program }

InitMain;

InitUsb; // <--— initialisation of the library

repeat

until USB_HID Device_Ready or // <--- test for readyness of the USB device

(USB_Error > 0);

if USB_HID Device_Ready then // the USB device is ready
begin

! devices with a 64 byte read/write HID report

uart write line('');
uart write line('HID device Ready');
uart write line('');

LatA.0 := 1; // signal readyness (example)
uart write line('');
end
else
begin // the USB device gives an error

uart _write line word_hex (USB_Error) ;
while true do; // stop all processing
end;

The above example shows the error code if the device does produce an error.

As you can see the initialisation is done with the “InitUsb” routine, the readiness of the device is
tested with “USB_HID_Device_Ready”. In case you do not want to block the software if
“USB_HID_Device_Ready” stays false, you should also test “USB_Error”. If it becomes > 0 then you
can stop waiting for “USB_HID_Device_Ready”, see the example above.

Reading and Writing packets
With this library a packet is always 64 bytes long (= “generic HID device”)

Reading and writing a packet is done as follows:

var Buff : array[64] of byte;
Success : boolean;

Success := USB_HID Read(Buff); // a packet from the HID device is read into Buff

if Success then // a packet was received from the HID device
begin

// process the buffer content here
end;

// define the buffer content here
Success := USB_HID Write (Buff); // the content of Buff is written to the device

if not success then // the transmission failed,
// the device was not ready to accept a packet
begin
// perhaps retry at some later time
end;

Both routines above return “true” if success, “false” if failiure.

Interface of the unit

procedure USB Interrupt;
// To be called from the main interrupt routine

procedure InitUsb;

// To be called once in the initialisation phase of the software

initialisation after device detach)

function USB HID Device Ready: boolean;
// Returns TRUE if an USB HID device is attache

function USB HID Read(var Buff: array([64] of byte):
// Returns true if some data has arrived, false means:

// The arguments are: //

d

boolean;

(iv IVT_ADDR USB1INTERRUPT)

(or when re-trying

no data arrived.

// Buff: the user defined receive buffer (always 64 bytes in size).

function USB _HID Write(var Buff: array[64] of byte):

// Returns success as true, false means: try later again

busy) .
// The arguments are: //

// Buff: the user defined send buffer (always 64 bytes

var USB Error: word;
// Returns the USB Error

// The USB Error signals one error per bit (see below for

const // Error constants

// USB_Error constants

USB_DEVICE DESCRIPTOR ERROR

USB_CONFIG DESCRIPTOR ERROR

USB INTERFACE DESCRIPTOR ERROR

USB INTERFACE DESCRIPTOR CLASS ERROR

USB INTERFACE DESCRIPTOR SUBCLASS ERROR
USB_INTERFACE DESCRIPTOR PROTOCOL_ ERROR
USB_ENDPOINT DESCRIPTOR_ERROR
USB_ENDPOINT DESCRIPTOR ATTRIBUTES ERROR
USB_ ENDPOINT DESCRIPTOR PACKETSIZE ERROR

S001;
$002;
$004;
$008;
$010;
$020;
$040;
$080;
$100;

//
//
/7
/7
/7
//
//
/7
/7

boolean;
(USB sendbuffer was still

in size).

the

bit
bit
bit
bit
bit
bit
bit
bit
bit

possible values)

O J o U W NP O

[end of document]

	Introduction
	Usage in a program
	Initialisation and test for readiness
	Reading and Writing packets

	Interface of the unit

