TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (357 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137065 times)
  2. FAT32 Library (70197 times)
  3. Network Ethernet Library (56080 times)
  4. USB Device Library (46376 times)
  5. Network WiFi Library (41998 times)
  6. FT800 Library (41329 times)
  7. GSM click (29084 times)
  8. mikroSDK (26525 times)
  9. PID Library (26472 times)
  10. microSD click (25450 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Noise click

Rating:

1

Author: MIKROE

Last Updated: 2020-05-18

Package Version: 1.0.0.1

mikroSDK Library: 1.0.0.0

Category: Microphone

Downloaded: 4216 times

Not followed.

License: MIT license  

Noise click is a mikroBUS add-on board with noise detecting circuitry. It enables you to set a noise detection threshold for alarm systems, environmental monitoring or data logging. When the volume of ambient sound reaches the set threshold, an interrupt is triggered.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Noise click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Noise click" changes.

Do you want to report abuse regarding "Noise click".

  • mikroSDK Library 2.0.0.0
  • Comments (2)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Noise Click

Noise Click

Front and Back images of Noise Click

View full image


Noise click is a mikroBUS add-on board with noise detecting circuitry. It enables you to set a noise detection threshold for alarm systems, environmental monitoring or data logging. When the volume of ambient sound reaches the set threshold, an interrupt is triggered.
The most important parts of the circuit are the microphone, an RMS-to-DC converter, two dual rail-to-rail Input/Output 10 MHz operational amplifiers, and a 12-bit digital-to-analog converter (DAC).
The 12-bit DAC provides the reference voltage — the noise threshold — for the comparator. You set the exact level through the SPI interface. The threshold should be configured through trial and error (4096 discrete values to select from).
Beside SPI, EN and OUT pins provide additional functionality.
The board works on a 3.3V power supply.
Key features:
- Onboard microphone
- MCP4921 12-bit DAC
- SPI interface, EN, OUT
- 3.3V power supply
Benefits:
- Hysteresis circuitry for stable operation
- Ready-to-use examples save development time
- Simple configuration through SPI interface
- Works in all MikroElektronika compilers
 

Noise click Schematic

Noise click Schematic

Schematic for Noise click board.

View full image

ALSO FROM THIS AUTHOR

Brushless 14 click

0

Brushless 14 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TB67B001FTG, a three-phase, brushless, Hall sensorless driver IC from Toshiba Semiconductor.

[Learn More]

TempHum 18 click

0

Temp&Hum 18 Click is a compact add-on board that represents temperature and humidity sensing solutions. This board features the HS3003, a highly accurate, fully calibrated relative humidity and temperature sensor from Renesas. It features proprietary sensor-level protection, ensuring high reliability and long-term stability. Integrated calibration and temperature-compensation logic provides fully corrected RH and temperature values via standard I2C output. No user calibration of the output data is required. The high accuracy, fast measurement response time, and long-term stability make this Click board™ ideal for various temperature and humidity-related applications and a vast number of applications ranging from portable devices to products designed for harsh environments.

[Learn More]

Stepper 10 click

0

Stepper 10 Click is a two-phase bipolar stepping motor driver capable of controlling one stepper motor with PWM constant current drive. Click's featured chip TB67S128FTG, from Toshiba Semiconductor, fabricated with BiCD process with an output rating of 50V/5A and a built-in decoder can supply the motor with voltage of up to 44V. Toshiba's innovative technology process results in low-power consumption with low on-resistance (0.25Ω) on the integrated MOSFET output stage. The stepper motor can be driven in both directions from full step to 1/128 micro-steps.

[Learn More]