TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142030 times)
  2. FAT32 Library (75256 times)
  3. Network Ethernet Library (59475 times)
  4. USB Device Library (49496 times)
  5. Network WiFi Library (45271 times)
  6. FT800 Library (44885 times)
  7. GSM click (31419 times)
  8. mikroSDK (30403 times)
  9. microSD click (27781 times)
  10. PID Library (27615 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

PWM driver click

Rating:

0

Author: MIKROE

Last Updated: 2019-03-13

Package Version: 1.0.0.1

mikroSDK Library: 1.0.0.0

Category: PWM

Downloaded: 6813 times

Not followed.

License: MIT license  

If you need to control DC motors with loads up to 10A, PWM driver click is the perfect solution, thanks to the Silicon Lab Si8711CC one-channel isolator. It communicates with the target MCU over PWM pin, and runs on a 5V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "PWM driver click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "PWM driver click" changes.

Do you want to report abuse regarding "PWM driver click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

PWM driver click

PWM driver click

Front and back view of the PWM driver click board.

View full image

Library Description

The library covers all the necessary functions to control the PWM driver Click board. PWM driver Click communicates with the target board via the PWM module. This library contains drivers for PWM function: initialization, for sets duty ratio, starts and stops PWM module.

Key functions:

  • void pwmdriver_gpioDriverInit( (T_PWMDRIVER_P)&_MIKROBUS1_GPIO ) - Function initializes GPIO driver for the desired MIKROBUS1.

Examples description

The application is composed of three sections:

  • System Initialization - Initializes GPIO and LOG structures, sets AN and INT pins as input and sets RST and PWM pins as output.
  • Application Initialization -  Initialization driver enables - GPIO, PWM initialization set PWM duty cycle and PWM frequency, start PWM, enable the engine, and start to write log.
  • Application Task - (code snippet) This is an example which demonstrates the use of PWM driver Click board. PWM driver Click communicates with register via PWM interface. This example shows the automatic control halogen bulb light intensity, the first intensity of light is rising and then the intensity of light is falling. Results are being sent to the Usart Terminal where you can track their changes.
void applicationTask() 
{
    mikrobus_logWrite( " Light Intensity Rising  ", _LOG_LINE );
    Delay_1sec();
 
    for ( dutyCycle = 5; dutyCycle < 255; dutyCycle += 25 )
    {
        pwmdriver_pwmSetDuty( dutyCycle );
        mikrobus_logWrite( " >", _LOG_TEXT );
        Delay_1sec();
    }
 
    mikrobus_logWrite( "", _LOG_LINE );
    mikrobus_logWrite( "-------------------------", _LOG_LINE );
    mikrobus_logWrite( " Light Intensity Falling ", _LOG_LINE );
    Delay_1sec();
 
    for ( dutyCycle = 255; dutyCycle > 5; dutyCycle -= 25 )
    {
        pwmdriver_pwmSetDuty( dutyCycle );
        mikrobus_logWrite( " <", _LOG_TEXT );
        Delay_1sec();
    }
  
    mikrobus_logWrite( "", _LOG_LINE );
    mikrobus_logWrite( "-------------------------", _LOG_LINE );
    Delay_1sec();
}  

Additional Functions :

  • uint32_t pwmdriver_pwmInit( uint16_t freq ) - Initializes the Timer module in PWM mode.
  • void pwmdriver_pwmSetDuty( uint16_t duty ) - The function changes PWM duty ratio.
  • void pwmdriver_pwmStart() Starts appropriate PWM module.
  • void pwmdriver_pwmStop() - Stops appropriate PWM module.

Other mikroE Libraries used in the example:

  • PWM
  • UART

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message

ALSO FROM THIS AUTHOR

Accel 22 Click

0

Accel 22 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL367, an ultra-low-power, high-performance three-axis accelerometer from Analog Devices. The ADXL367 allows selectable full-scale acceleration measurements in ranges of ±2g, ±4g, and ±8g in three axes, with a resolution of 0.25 mg/LSB on the ±2g range, alongside a configurable host interface that supports both SPI and I2C serial communication. This device combines a 3-axis MEMS accelerometer, a temperature sensor, and a 14-bit analog-to-digital converter (ADC) to synchronize an external analog signal conversion.

[Learn More]

LightRanger 7 Click

0

LightRanger 7 Click is a compact add-on board capable of precise distance measurement and motion tracking. This board features the AFBR-S50, a medium-range 3D multipixel Time-of-Flight (ToF) sensor from Broadcom. Besides a VCSEL-based ToF sensor (Laser Class 1 eye safety), optimized to measure various distances working equally well on white, black, colored, and metallic reflective surfaces, this board also includes a 32-bit MCU, RA4M2 group of Renesas MCU with Arm® Cortex®-M33 core, alongside a 4-pin standard CAN connections compatible with Pixhawk®, a popular general-purpose flight controller.

[Learn More]

Load Cell 3 Click

0

Load Cell 3 Click is a compact add-on board that represents a weigh scale solution. This board features the PGA302, a low-drift, low-noise, programmable signal-conditioner device designed for various resistive bridge-sensing applications from Texas Instruments. It creates 2.5V of bridge excitation and a current output source with programmable current output up to 1mA. Two identical analog front-end (AFE) channels followed by a 16-bit Sigma-Delta ADC are available at the input, where each AFE channel has a dedicated programmable gain amplifier with gain up to 200V/V. It also comes with an on-chip temperature sensor and integrated EEPROM memory for device configuration, calibration, and user data.

[Learn More]