TOP Contributors

  1. MIKROE (2659 codes)
  2. Alcides Ramos (356 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136957 times)
  2. FAT32 Library (70080 times)
  3. Network Ethernet Library (56015 times)
  4. USB Device Library (46338 times)
  5. Network WiFi Library (41958 times)
  6. FT800 Library (41266 times)
  7. GSM click (29051 times)
  8. mikroSDK (26480 times)
  9. PID Library (26447 times)
  10. microSD click (25411 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

5G NB IoT click

Rating:

5

Author: MIKROE

Last Updated: 2020-03-09

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: LTE IoT

Downloaded: 2473 times

Not followed.

License: MIT license  

5G NB IoT Click is a Click boardâ„¢ based on Gemalto's Cinterion ENS22 NB-IoT Wireless Module platform that boosts highly efficient future 5G connectivity for the IoT.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "5G NB IoT click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "5G NB IoT click" changes.

Do you want to report abuse regarding "5G NB IoT click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

5G NB IoT Click

5G NB IoT Click

Native view of the 5G NB IoT Click board.

View full image
5G NB IoT Click

5G NB IoT Click

Front and back view of the 5G NB IoT Click board.

View full image

Library Description

Library provides control over on pin and ability to send commands through UART module.

Key functions:

  • void c5gnbiot_send_cmd ( uint8_t *cmd ) - Function for sending commands to device
  • void c5gnbiot_set_on ( uint8_t state ) - Generic function for setting on pin status

Examples description

The application is composed of three sections :

  • System Initialization - Initialization of UART MODULE and additional pins
  • Application Initialization - Turns on device and sends initial commands
  • Application Task - Checks some device parameters by sending AT commands
void application_task ( )
{
    c5gnbiot_send_cmd( &AT_CGATT[0] );
    Delay_ms( 5000 );
    c5gnbiot_send_cmd( &AT_CEREG[0] );
    Delay_ms( 5000 );
}

Other mikroE Libraries used in the example:

  • UART

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

I2C to SPI click

5

I2C to SPI Click is an all-in-one solution which allows serving as an interface between a standard I2C-bus of a microcontroller and an SPI bus, which allows the microcontroller to communicate directly with SPI devices through its I2C-bus.

[Learn More]

TempHum 23 click

0

Temp&Hum 23 Click is a compact add-on board representing temperature and humidity sensing solution. This board features the SHT45, a 4th generation ultra-low-power relative humidity and temperature sensor from Sensirion. The SHT45 is characterized by its high accuracy (±1% RH and ±0.1°C over a wide operating temperature range) and high resolution providing 16-bit data to the host controller with a configurable I2C interface. Also, it is designed for reliable operation in harsh conditions such as condensing environments. This Click board™ is perfectly suitable for high-volume applications.

[Learn More]

Stepper 2 click

0

Stepper 2 click is a complete solution for driving bipolar stepper motors with full/half and micro-steps. It features the A4988 IC from Allegro Microsystems with DMOS low RDSON drivers on its outputs, which ensure high efficiency and reliable operation of the internal H-Bridges. This IC has the integrated translator section, used to simplify the control: using simple step control inputs from the host MCU, the stepper motor can be driven in both directions, with the predetermined step sizes. In addition, the output current is regulated allowing for noiseless operation of the stepper motor, with no resonance and ringing typically observed at unregulated stepper driver designs.

[Learn More]