TOP Contributors

  1. MIKROE (2654 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136751 times)
  2. FAT32 Library (69955 times)
  3. Network Ethernet Library (55942 times)
  4. USB Device Library (46268 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41182 times)
  7. GSM click (28986 times)
  8. PID Library (26414 times)
  9. mikroSDK (26367 times)
  10. microSD click (25377 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

6DOF IMU 8 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 144 times

Not followed.

License: MIT license  

6DOF IMU 8 click is an advanced 6-axis motion tracking Click board™, which utilizes the ISM330DLC, a high-performance System in Package (SiP), equipped with a 3-axis gyroscope, and a 3-axis accelerometer.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "6DOF IMU 8 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "6DOF IMU 8 click" changes.

Do you want to report abuse regarding "6DOF IMU 8 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


6DOF IMU 8 click

6DOF IMU 8 click is an advanced 6-axis motion tracking Click board™, which utilizes the ISM330DLC, a high-performance System in Package (SiP), equipped with a 3-axis gyroscope, and a 3-axis accelerometer.

6dofimu8_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the 6DOF IMU 8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for 6DOF IMU 8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c6dofimu8_cfg_setup ( c6dofimu8_cfg_t *cfg );

  • Initialization function.

    C6DOFIMU8_RETVAL c6dofimu8_init ( c6dofimu8_t ctx, c6dofimu8_cfg_t cfg );

  • Click Default Configuration function.

    void c6dofimu8_default_cfg ( c6dofimu8_t *ctx );

Example key functions :

  • This function checks does interrupt generated on the INT1 pin.

    uint8_t c6dofimu8_get_int_1_pin ( c6dofimu8_t *ctx );

  • This function checks a data ready status for all measurements.

    uint8_t c6dofimu8_get_drdy_status ( c6dofimu8_t *ctx, uint8_t bit_mask );

  • This function performs a magnetometer data reading.

    void c6dofimu8_get_magnetometer_data ( c6dofimu8_t ctx, t_c6dofimu8_axis magneto_out );

Examples Description

This app gets three-axis gyroscope value, three-axis accelerometer value and temperature.

The demo application is composed of two sections :

Application Init

Initializes device and performs a device software reset and configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    c6dofimu8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c6dofimu8_cfg_setup( &cfg );
    C6DOFIMU8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c6dofimu8_init( &c6dofimu8, &cfg );

    Delay_ms ( 500 );

    c6dofimu8_default_cfg( &c6dofimu8 );

    log_printf( &logger, "** 6DOF IMU 8 is initialized **\r\n" );
    Delay_ms ( 300 );
}

Application Task

Waits until any new data is entered to the data registers and then reads the accelerometer, gyroscope and temperature data which will be converted and calculated to the properly units each second.


void application_task ( void )
{
    uint8_t data_ready;
    int8_t temperature;
    t_c6dofimu8_axis  accel_data;
    t_c6dofimu8_axis  gyro_data;

    data_ready = c6dofimu8_get_drdy_status( &c6dofimu8, C6DOFIMU8_TEMP_DRDY_MASK | 
                                                        C6DOFIMU8_G_DRDY_MASK | 
                                                        C6DOFIMU8_XL_DRDY_MASK );
    while ( data_ready == C6DOFIMU8_EVENT_NOT_DETECTED )
    {
        data_ready = c6dofimu8_get_drdy_status( &c6dofimu8, C6DOFIMU8_TEMP_DRDY_MASK | 
                                                            C6DOFIMU8_G_DRDY_MASK | 
                                                            C6DOFIMU8_XL_DRDY_MASK );
    }

    c6dofimu8_get_data( &c6dofimu8, &accel_data, &gyro_data, &temperature );

    log_printf( &logger, "** Accelerometer values : \r\n" );
    log_axis( &accel_data );

    log_printf( &logger, "** Gyroscope values : \r\n" );
    log_axis( &gyro_data );

    log_printf( &logger, "** Temperature value : %d degC \r\n", ( int16_t )temperature );
    log_printf( &logger, "-------------------------------------------------\r\n" );

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.6DofImu8

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Angle 8 click

0

Angle 8 Click is a compact add-on board that detects the absolute angular position of a permanent magnet. This board features the MA782GGU, a low-power angle sensor with integrated wake-up angle detection from Monolithic Power Systems. With its power cycling ability, the MA782GGU can be optimized for applications that require low average power. It supports a wide range of magnetic field strengths and spatial configurations, with both end-of-shaft and off-axis (side-shaft mounting), supported configurations. Fast data acquisition and processing provides accurate angle measurement at an applied magnetic field of 60mT, alongside magnetic field strength detection with programmable thresholds. This Click board™ is suitable for general-purpose angle measurements, in embedded motion control applications, as a power/speed control trigger solution, and more.

[Learn More]

LLC I2C click

0

LLC I2C click can be utilized as the level converter for logic signals, which makes it a very useful Click board™. The topology of this logic level conversion (LLC) circuit is perfectly suited for the bi-directional I2C communication. Although there are some specialized integrated circuits on the market, sometimes it is more convenient to have a simple solution made of just a few passive elements and four MOSFETs.

[Learn More]

Mikromedia 3 for STM32F2 Capacitive

0

This project contains example for testing modules on Mikromedia 3 for STM32F2 Capacitive.

[Learn More]