TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141694 times)
  2. FAT32 Library (74760 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44526 times)
  7. GSM click (31196 times)
  8. mikroSDK (30100 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 12 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.22

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 633 times

Not followed.

License: MIT license  

Accel 12 Click is an advanced 3-axis motion tracking Click board™, which utilizes the MC3216, a low-noise, and low power 3-axis accelerometer.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 12 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 12 Click" changes.

Do you want to report abuse regarding "Accel 12 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Accel 12 Click

Accel 12 Click is an advanced 3-axis motion tracking Click board™, which utilizes the MC3216, a low-noise, and low power 3-axis accelerometer.

accel12_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Accel12 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Accel12 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void accel12_cfg_setup ( accel12_cfg_t *cfg );

  • Initialization function.

    ACCEL12_RETVAL accel12_init ( accel12_t ctx, accel12_cfg_t cfg );

  • Click Default Configuration function.

    void accel12_default_cfg ( accel12_t *ctx );

Example key functions :

  • Functions for configuration one register

    void accel12_configuration ( accel12_t *ctx, uint8_t reg, uint8_t data_in );

  • Functions for read one Accel axis data

    int16_t accel12_get_one_axis ( accel12_t *ctx, uint8_t axis );

  • Functions for read Accel axis data

    void accel12_get_axis_data ( accel12_t ctx, int16_t x_axis, int16_t y_axis, int16_t z_axis);

Examples Description

This application allows acceleration measurement in three perpendicular axes.

The demo application is composed of two sections :

Application Init

Initialization driver init and configuration Accel measuremen and Tap detection interrupt


void application_init ( void )
{
    log_cfg_t log_cfg;
    accel12_cfg_t cfg;
    uint8_t temp;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    accel12_cfg_setup( &cfg );
    ACCEL12_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    accel12_init( &accel12, &cfg );

    accel12_default_cfg( &accel12 );

    log_printf( &logger, "--- Start measurement --- \r\n" );
}

Application Task

Reads the acceleration data in 3 axis and detects the tap on the axes. All data logs on the USBUART every 1.5sec.


void application_task ( void )
{
    int16_t X_Axis;
    int16_t Y_Axis;
    int16_t Z_Axis;
    uint8_t tap;

    /* Accelerometer measurement */
    accel12_get_axis_data( &accel12, &X_Axis, &Y_Axis, &Z_Axis );

    log_printf( &logger, " X axis : %d \r\n", X_Axis );

    log_printf( &logger, " Y axis : %d \r\n", Y_Axis );

    log_printf( &logger, " Z axis : %d \r\n", Z_Axis );

    /* TAP interrupt */
    tap = accel12_get_tap_detection( &accel12 );
    switch ( tap )
    {
        case 1:
        {
            log_printf( &logger, " X positive \r\n" );
            break;
        }
        case 2:
        {
            log_printf( &logger, " Y positive \r\n" );
            break;
        }
        case 3:
        {
            log_printf( &logger, " Z positive \r\n" );
            break;
        }
        case 4:
        {
            log_printf( &logger, " X negative \r\n" );
            break;
        }
        case 5:
        {
            log_printf( &logger, " Y negative \r\n" );
            break;
        }
        case 6:
        {
            log_printf( &logger, " Z negative \r\n" );
            break;
        }
    }
    log_printf( &logger, " -------------------------------- \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 500 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel12

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Flash 10 Click

0

Flash 10 Click is a compact add-on board representing a highly reliable memory solution. This board features the AT25FF321A, an SPI configurable 32Mbit (2Mx16) serial Flash memory solution from Dialog Semiconductor. The AT25FF321A is an ideal solution for systems in which program code is shadowed from Flash memory into embedded or external RAM (code shadow) for execution and where small amounts of data are stored and updated locally in the Flash memory. It has a flexible and optimized erase architecture for code and data storage applications, non-volatile protection, and four specialized 128-byte OTP security registers to store a unique device ID and locked key storage. This memory can withstand many write cycles (minimum 100k) and has a data retention period greater than 20 years.

[Learn More]

Expand 9 Click

0

Expand 9 Click is a compact add-on board that contains a multi-port I/O expander. This board features the SX1509QB, the world’s lowest voltage level shifting GPIO expander from Semtech Corporation. The SX1509QB comes in a 16-channel configuration and allows easy serial expansion of I/O through a standard I2C serial interface. It also has a built-in level shifting feature making it highly flexible in power supply systems where communication between incompatible I/O voltages is required, an integrated LED driver for enhanced lighting, and a keypad scanning engine to implement keypad applications up to 8x8 matrix.

[Learn More]

3D Hall 9 Click

0

3D Hall 9 Click is a compact add-on board used to detect the strength of a magnetic field in all three dimensions. This board features the ALS31300, a 3D linear Hall-effect sensor with digital output and advanced low power management from Allegro Microsystems. The ALS31300 features an I2C interface, enabling it to be easily configured by MCU with the measurement data provided in digital format of 12-bits corresponding to the magnetic field measured in each X, Y, and Z axes.

[Learn More]