TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141855 times)
  2. FAT32 Library (75023 times)
  3. Network Ethernet Library (59335 times)
  4. USB Device Library (49335 times)
  5. Network WiFi Library (45147 times)
  6. FT800 Library (44691 times)
  7. GSM click (31297 times)
  8. mikroSDK (30249 times)
  9. microSD click (27681 times)
  10. PID Library (27570 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Tester Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Proto

Downloaded: 502 times

Not followed.

License: MIT license  

Each pin of the mikroBUS™ is routed to a red colored LED, which is protected by 1K resistor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Tester Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Tester Click" changes.

Do you want to report abuse regarding "Tester Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Tester Click

Tester Click is a Click board™ used as a diagnostic tool on the mikroBUS™ socket.

tester_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : GPIO type

Software Support

We provide a library for the Tester Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Tester Click driver.

Standard key functions :

  • Config Object Initialization function.

    void tester_cfg_setup ( tester_cfg_t *cfg );

  • Initialization function.

    TESTER_RETVAL tester_init ( tester_t ctx, tester_cfg_t cfg );

  • Click Default Configuration function.

    void tester_default_cfg ( tester_t *ctx );

Example key functions :

  • This function sets the output voltage on the specified pin to high.

    void tester_set_pin_high ( digital_out_t *pin );

  • This function sets the output voltage on the specified pin to low.

    void tester_set_pin_low ( digital_out_t *pin );

Examples Description

This example showcases how to initialize, configure and use the Tester Click. It is a simple GPIO Click which is used to test if all the pins on a MikroBUS are working correctly.

The demo application is composed of two sections :

Application Init

This function initializes and configures the Click and logger modules.


void application_init ( )
{
    log_cfg_t log_cfg;
    tester_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    tester_cfg_setup( &cfg );
    TESTER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    tester_init( &tester, &cfg );
}

Application Task

This function sets the output on all the pins (one by one) on the left side to high, going from top to bottom and then does the same with the ones on the right side, after which it sets all pins to high and after one second sets them back to low.


void application_task ( )
{
    int i;

    for( i = 0; i < 12; i++ )
    {
        blink( pin_addr[ i ] );
    }

    all_on( );
    Delay_1sec( );
    all_off( );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Tester

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Ambient 21 Click

0

Ambient 21 Click is a compact add-on board used to measure the amount of the present ambient light. This board features ams AG's TSL2591, a very-high sensitivity light-to-digital converter that transforms light intensity to a digital signal output capable of the direct I2C interface. It combines one broadband photodiode (visible plus infrared) and one infrared-responding photodiode on a single CMOS integrated circuit, providing a flexible and wide operating range of up to 88klx with an excellent responsivity close to the human eyes' response. The TSL2591 also has a programmable interrupt function and an integrated filter to reduce unwanted IR signals from the environment, improving lux accuracy across various light sources.

[Learn More]

Angle 3 Click

0

Angle 3 Click carries the AK7451, a magnetic rotational angle sensor. The Click is designed to run on a 5V power supply.

[Learn More]

Brushless 22 Click

0

Brushless 22 Click is a compact add-on board suitable for controlling brushless DC (BLDC) motors with any MCU. This board features the MTD6508, a 3-phase full-wave sensorless driver for BLDC motors from Microchip Technology. It features 180° sinusoidal drive, high torque output, and silent drive, rated for an operating voltage range including both mikroBUS™ power rails, and comes with speed control achieved through pulse-width modulation (PWM). Besides, it features several diagnostic circuits and drive-control functions such as motor lock protection, overcurrent limitation, and thermal shutdown protection.

[Learn More]