TOP Contributors

  1. MIKROE (2664 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137129 times)
  2. FAT32 Library (70240 times)
  3. Network Ethernet Library (56131 times)
  4. USB Device Library (46447 times)
  5. Network WiFi Library (42103 times)
  6. FT800 Library (41410 times)
  7. GSM click (29125 times)
  8. mikroSDK (26567 times)
  9. PID Library (26510 times)
  10. microSD click (25501 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

THERMO click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 198 times

Not followed.

License: MIT license  

THERMO click features the MAX31855K thermocouple-to-digital converter as well as PCC-SMP connector for K-type thermocouple probes. The click is designed to run on a 3.3V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "THERMO click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "THERMO click" changes.

Do you want to report abuse regarding "THERMO click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


THERMO click

THERMO click features the MAX31855K thermocouple-to-digital converter as well as PCC-SMP connector for K-type thermocouple probes. The click is designed to run on a 3.3V power supply.

thermo_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Thermo Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thermo Click driver.

Standard key functions :

  • Config Object Initialization function.

    void thermo_cfg_setup ( thermo_cfg_t *cfg );

  • Initialization function.

    THERMO_RETVAL thermo_init ( thermo_t ctx, thermo_cfg_t cfg );

Example key functions :

  • Function gets thermocouple temperature data.

    float thermo_get_temperature ( thermo_t* ctx );

  • Function checks fault states of MAX31855 sensor on Thermo click board.

    uint8_t thermo_check_fault ( thermo_t* ctx );

  • Function reads the 32-bit of data from the sensor.

    uint32_t thermo_read_data ( thermo_t* ctx );

Examples Description

This example measures temperature and then logs the results.

The demo application is composed of two sections :

Application Init

Initializes driver and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    thermo_cfg_t cfg;


    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    thermo_cfg_setup( &cfg );
    THERMO_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thermo_init( &thermo, &cfg );

    if ( thermo_check_fault( &thermo ) )
    {
        display_error_msg();
    }
    else
    {
        log_printf( &logger, "Status OK\r\n" );
    }

}

Application Task

Temperature measured by the thermocouple is converter and the results are logged.


void application_task ( void )
{
    temperature = thermo_get_temperature( &thermo );

    log_printf( &logger, "Temperature : %f\r\n", temperature );

} 

Note

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Remote Weather Station with ClickCloud - GSM platform

0

What is the weather going to be like today? That’s the first question everyone asks in the morning. With this innovative project you can measure temperature and humidity in real time! You can even access this data remotely via the G2C 3G Click, a reliable connection to the Click Cloud platform, a cloud-based rapid prototyping environment.

[Learn More]

Diff Press 3 click

0

Diff Press 3 Click is a compact add-on board that can measure differential pressure. It features the 2513130810401, a WSEN-PDUS differential pressure sensor from Würth Elektronik. The sensor is MEMS based and uses a piezo-resistive sensing principle. It is a fully calibrated pressure sensor with 15-bit digital and 11-bit analog outputs. In addition to pressure measurement, the 2513130810401 WSEN-PDUS sensor also has an embedded temperature sensor.

[Learn More]

Power MUX 2 click

0

Power MUX 2 Click is a compact add-on board that contains a highly configurable power mux. This board features the TPS2120, a dual-input single-output power multiplexer with an automatic switchover feature from Texas Instruments. This Click board™ prioritizes the main supply when present and quickly switches to auxiliary supply when the main supply drops. During switchover, the voltage drop is controlled to block reverse current before it happens and provide uninterrupted power to the load with minimal hold-up capacitance. This Click board™ is suitable for applications as a backup and standby power, input source selection, and various systems having multiple power sources.

[Learn More]