TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136812 times)
  2. FAT32 Library (69983 times)
  3. Network Ethernet Library (55952 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41892 times)
  6. FT800 Library (41197 times)
  7. GSM click (28990 times)
  8. PID Library (26420 times)
  9. mikroSDK (26376 times)
  10. microSD click (25383 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Presence click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Miscellaneous

Downloaded: 103 times

Not followed.

License: MIT license  

Presence click is an infrared sensing Click board™ which can be used for presence sensing, motion detection, and a remote overtemperature protection.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Presence click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Presence click" changes.

Do you want to report abuse regarding "Presence click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Presence click

Presence click is an infrared sensing Click board™ which can be used for presence sensing, motion detection, and a remote overtemperature protection.

presence_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Presence Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Presence Click driver.

Standard key functions :

  • presence_cfg_setup Config Object Initialization function.

    void presence_cfg_setup ( presence_cfg_t *cfg ); 
  • presence_init Initialization function.

    err_t presence_init ( presence_t *ctx, presence_cfg_t *cfg );
  • presence_default_cfg Click Default Configuration function.

    err_t presence_default_cfg ( presence_t *ctx );

Example key functions :

  • presence_ambient_temperature This function returns ambient temperature in degrees Celsius.

    err_t presence_ambient_temperature( presence_t *ctx, float *temperature )
  • presence_object_temperature This function returns object temperature.

    err_t presence_object_temperature( presence_t *ctx, float *temperature );

Examples Description

This application enables usage of sensor for motion and presence sensing and measuring of object's and ambient temperature.

The demo application is composed of two sections :

Application Init

Initializes driver and performs the click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    presence_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.
    presence_cfg_setup( &cfg );
    PRESENCE_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    presence_init( &presence, &cfg );

    if ( PRESENCE_ERROR == presence_default_cfg ( &presence ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Checks whether a new event (motion, presence or over-temperature) is detected. If there's no event detected it reads the ambient and object temperature and displays the results on the USB UART.


void application_task ( void )
{
    uint8_t int_status = 0;
    uint8_t tp_presence = 0;
    uint8_t tp_motion = 0;
    float t_amb = 0;
    float t_obj = 0;

    if ( PRESENCE_OK == presence_generic_read( &presence, PRESENCE_REG_INTERRUPT_STATUS, &int_status, 1 ) )
    {
        if ( int_status & PRESENCE_INT_MASK1_PRESENCE )
        {
            if ( PRESENCE_OK == presence_generic_read( &presence, PRESENCE_REG_TP_PRESENCE, &tp_presence, 1 ) )
            {
                log_info( &logger, "Presence detected! Level: %u", ( uint16_t ) tp_presence );
            }
        }
        else if ( int_status & PRESENCE_INT_MASK1_MOTION )
        {
            if ( PRESENCE_OK == presence_generic_read( &presence, PRESENCE_REG_TP_MOTION, &tp_motion, 1 ) )
            {
                log_info( &logger, "Motion detected! Level: %u", ( uint16_t ) tp_motion );
            }
        }
        else if ( int_status & PRESENCE_INT_MASK1_TP_OT )
        {
            log_info( &logger, "Temp threshold exceeded!" );
        }
        else
        {
            if ( PRESENCE_OK == presence_ambient_temperature( &presence, &t_amb ) )
            {
                log_printf( &logger, "Ambient temperature: %.2f degC\r\n", t_amb );
            }
            if ( PRESENCE_OK == presence_object_temperature( &presence, &t_obj ) )
            {
                log_printf( &logger, "Object temperature: %.2f degC\r\n\n", t_obj );
            }
        }
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Presence

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

BT-EZ click

0

The BT-EZ click is a Click board™ which provide BLE connectivity for any embedded application.

[Learn More]

Power Bank 2 click

5

The PowerBank 2 Click is a Click board equipped with the RT9480, highly integrated and easy to use power solution for Li-ion power bank and other powered handheld applications. It’s usually called EZPBS (Easy to Use PowerBank Solution).

[Learn More]

Multi Stepper TB67S102 click

0

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S102AFNG, CLOCK-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and allows full-, half-, and quarter-step operation for less motor noise and smoother control. It has a wide operating voltage range of 10V to 47V with an output current capacity of 2.8A in addition to several built-in error detection circuits.

[Learn More]