TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141786 times)
  2. FAT32 Library (74881 times)
  3. Network Ethernet Library (59280 times)
  4. USB Device Library (49265 times)
  5. Network WiFi Library (45077 times)
  6. FT800 Library (44613 times)
  7. GSM click (31272 times)
  8. mikroSDK (30203 times)
  9. microSD click (27653 times)
  10. PID Library (27552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Proximity 9 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Proximity

Downloaded: 429 times

Not followed.

License: MIT license  

Proximity 9 Click is a very accurate and reliable proximity sensing (PS) and ambient light sensing (ALS) device, equipped with the VCNL4040, an integrated PS and ALS sensor which features the Filtron™ technology.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Proximity 9 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Proximity 9 Click" changes.

Do you want to report abuse regarding "Proximity 9 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Proximity 9 Click

Proximity 9 Click is a very accurate and reliable proximity sensing (PS) and ambient light sensing (ALS) device, equipped with the VCNL4040, an integrated PS and ALS sensor which features the Filtron™ technology.

proximity9_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Proximity9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Proximity9 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void proximity9_cfg_setup ( proximity9_cfg_t *cfg );

  • Initialization function.

    PROXIMITY9_RETVAL proximity9_init ( proximity9_t ctx, proximity9_cfg_t cfg );

  • Click Default Configuration function.

    void proximity9_default_cfg ( proximity9_t *ctx );

Example key functions :

  • INT Pin Check function

    uint8_t proximity9_check_int_pin ( proximity9_t *ctx );

  • INT Flag Check function

    uint8_t proximity9_check_int_flag ( proximity9_t *ctx, uint8_t bit_mask );

  • ALS Get function

    float proximity9_get_als_lux ( proximity9_t *ctx );

Examples Description

This application is proximity sensing (PS) and ambient light sensing (ALS) device.

The demo application is composed of two sections :

Application Init

Initializes I2C interface and performs a device configurations.


void application_init ( void )
{
    log_cfg_t log_cfg;
    proximity9_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    proximity9_cfg_setup( &cfg );
    PROXIMITY9_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    proximity9_init( &proximity9, &cfg );

    proximity9_default_cfg( &proximity9 );

    log_printf( &logger, "** Proximity 9 is initialized ** \r\n" );
    log_printf( &logger, "************************************ \r\n" );
    Delay_ms ( 300 );
}

Application Task

Performs a data reading and interrupt flag checking. Allows data and interrupt flags messages to be showed on the uart terminal.


void application_task ( )
{
    uint8_t int_check;
    uint16_t prox_data;
    float als_data;
    uint8_t temp;

    als_data = proximity9_get_als_lux( &proximity9 );
    proximity9_read_register( &proximity9, PROXIMITY9_PS_DATA_REG, &prox_data );
    temp = PROXIMITY9_PS_IF_CLOSE_FLAG | PROXIMITY9_PS_IF_AWAY_FLAG;
    int_check = proximity9_check_int_flag( &proximity9, temp );

    log_printf( &logger, "** ALS: %.2f lux \r\n", als_data );
    log_printf( &logger, "** PROXIMITY: %d \r\n", prox_data );

    if ( int_check == PROXIMITY9_PS_IF_CLOSE_FLAG )
    {
        log_printf( &logger, "** Object is close! \r\n" );
        log_printf( &logger, "************************************ \r\n" );
        Delay_ms ( 200 );
    }
    if ( int_check == PROXIMITY9_PS_IF_AWAY_FLAG )
    {
        log_printf( &logger, "** Object is away!\r\n" );
        log_printf( &logger, "************************************ \r\n" );
        Delay_ms ( 200 );
    }
    if ( int_check == PROXIMITY9_INT_CLEARED )
    {
        log_printf( &logger, "************************************ \r\n" );
        Delay_ms ( 200 );
    }
}  

Note

The ALS sensitivity depends on the ALS integration time setting. The longer integration time has higher sensitivity. The Proximity (PS) output data can be set to 12-bit or 16-bit resolution.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity9

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

2x20W Amp Click

0

2x20W Amp Click carries the MAX9744 stereo class D audio power amplifier from Maxim Integrated. This Click brings the Class AB sound performance with Class D efficiency.

[Learn More]

RS232 Isolator 2 Click

0

RS232 Isolator 2 Click is a compact add-on board that contains a fully isolated transceiver used to provide secure and easy UART to RS232 conversion. This board features the ICL3221, a 3.3V powered RS232 transmitter/receiver that provides ±15kV ESD protection on its RS232 pins from Renesas. This Click board™ is characterized by an assured minimum data rate of 250kbps. It features an automatic power-down function and uses high-speed digital optocouplers to isolate the RS232 interface for 3.75kV isolation. It also possesses an LED indicator that indicates a valid RS232 signal at any of the receiver inputs. This Click board™ is suitable for isolation of RS232 signals, portable equipment, and where the low operational power consumption and even lower standby power consumption are critical.

[Learn More]

Charger 17 Click

0

Charger 17 Click is a compact add-on board that provides a single-cell battery charging solution. This board features the RT9471, a 3A single-cell switching battery charger from Richtek. It is a highly-integrated battery charge and system power-path management device for single-cell Li-Ion and Li-Polymer batteries. The high-efficiency 1.5MHz synchronous switch-mode buck charger achieves up to 92% charge efficiency at 2A with 5V input and 3.8V battery.

[Learn More]