TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142048 times)
  2. FAT32 Library (75270 times)
  3. Network Ethernet Library (59483 times)
  4. USB Device Library (49505 times)
  5. Network WiFi Library (45278 times)
  6. FT800 Library (44902 times)
  7. GSM click (31422 times)
  8. mikroSDK (30431 times)
  9. microSD click (27788 times)
  10. PID Library (27619 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Shake2Wake Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 375 times

Not followed.

License: MIT license  

Shake2Wake Click carries an ADXL362 ultralow power, 3-axis MEMS accelerometer and ADP195 load switch. The distinguishing feature of this IC is that it incorporates several activity detection modes.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Shake2Wake Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Shake2Wake Click" changes.

Do you want to report abuse regarding "Shake2Wake Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Shake2Wake Click

Shake2Wake Click carries an ADXL362 ultralow power, 3-axis MEMS accelerometer and ADP195 load switch. The distinguishing feature of this IC is that it incorporates several activity detection modes.

shake2wake_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Shake2Wake Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Shake2Wake Click driver.

Standard key functions :

  • shake2wake_cfg_setup Config Object Initialization function.

    void shake2wake_cfg_setup ( shake2wake_cfg_t *cfg ); 
  • shake2wake_init Initialization function. err_t shake2wake_init ( shake2wake_t ctx, shake2wake_cfg_t cfg );

  • shake2wake_default_cfg Click Default Configuration function.

    void shake2wake_default_cfg ( shake2wake_t *ctx );

Example key functions :

  • shake2wake_get_lo_res_raw_data This function is used to read 8-bit acceleration data per axis.

    void shake2wake_get_lo_res_raw_data ( shake2wake_t *ctx, int8_t *x_val, int8_t *y_val, int8_t *z_val );
  • shake2wake_get_raw_data This function is used to read the 3-axis raw data from the accelerometer.

    void shake2wake_get_raw_data ( shake2wake_t *ctx, int16_t *x_val, int16_t *y_val, int16_t *z_val )
  • shake2wake_read_temperature This function is used to read temperature from an internal sensor.

    float shake2wake_read_temperature ( shake2wake_t *ctx );

Examples Description

This app shows the capabilities of the Shake2Wake Click by reading values of an accelerometer.

The demo application is composed of two sections :

Application Init

Initalizes device and applies default settings.


void application_init ( void )
{
    log_cfg_t log_cfg;
    shake2wake_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.
    shake2wake_cfg_setup( &cfg );
    SHAKE2WAKE_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    shake2wake_init( &shake2wake, &cfg );
    Delay_ms ( 100 );

    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, "    Shake2Wake  Click     \r\n" );
    log_printf( &logger, "--------------------------\r\n" );

    shake2wake_default_cfg( &shake2wake );
    Delay_ms ( 1000 );
}

Application Task

This is an example that shows the capabilities of the Shake2Wake Click by reading values of an accelerometer and logging them on USART terminal and, in case of an interrupt, it raises voltage on the connector.


void application_task ( void )
{
    float temperature = 0;
    int16_t x_val = 0;
    int16_t y_val = 0;
    int16_t z_val = 0;

    shake2wake_get_raw_data( &shake2wake, &x_val, &y_val, &z_val );
    temperature = shake2wake_read_temperature( &shake2wake );

    log_printf( &logger, "X axis: %d\r\n", x_val );
    log_printf( &logger, "Y axis: %d\r\n", y_val );
    log_printf( &logger, "Z axis: %d\r\n", z_val );
    log_printf( &logger, "Temperature: %.2f degC\r\n", temperature );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Shake2Wake

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

GNSS MAX 2 Click

0

GNSS MAX 2 Click is a compact add-on board designed for precise positioning in urban environments. This board features the MAX-F10S, a professional-grade L1/L5 dual-band GNSS receiver from u-blox. This receiver uses dual-band GNSS technology to provide meter-level accuracy, even in challenging urban areas, by mitigating multipath effects. It supports concurrent GPS, Galileo, and BeiDou constellation tracking, offering robust performance with integrated filters and a low-noise amplifier for protection against RF interference. GNSS MAX 2 Click is ideal for vehicle tracking, fleet management, and micromobility solutions, even with small antennas.

[Learn More]

UWB 2 Click

0

UWB 2 Click is a compact add-on board that brings Ultra-Wideband communication to any solution. This board features the DWM3000, an IEEE 802.15-z UWB transceiver module from Qorvo. This module fully aligns with FiRaTM PHY, MAC, and certification development. It uses an integrated UWB antenna to establish wireless communication in UWB channels 5 (6.5GHz) and 9 (8GHz). This Click board™ makes the perfect solution for developing precision real-time location systems (RTLS) using two-way ranging or TDoA schemes in various markets, location-aware wireless sensor networks (WSNs), and more.

[Learn More]

Expand click

0

Example for Expand click board in mikroBUS form factor. This is code writes data to expander's PortB and reads it from expander's PortA. Result is shown on PortB LEDs on development board.

[Learn More]