TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141694 times)
  2. FAT32 Library (74760 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44526 times)
  7. GSM click (31196 times)
  8. mikroSDK (30100 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Excelon LP Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: FRAM

Downloaded: 385 times

Not followed.

License: MIT license  

Excelon LP Click carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Excelon LP Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Excelon LP Click" changes.

Do you want to report abuse regarding "Excelon LP Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Excelon LP Click

Excelon LP Click carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

excelonlp_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : SPI type

Software Support

We provide a library for the ExcelonLP Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for ExcelonLP Click driver.

Standard key functions :

  • Config Object Initialization function.

    void excelonlp_cfg_setup ( excelonlp_cfg_t *cfg );

  • Initialization function.

    EXCELONLP_RETVAL excelonlp_init ( excelonlp_t ctx, excelonlp_cfg_t cfg );

Example key functions :

  • Functions for send opcode command

    void excelonlp_send_command ( excelonlp_t *ctx, uint8_t opcode );

  • Functions for read data

    void excelonlp_read_data ( excelonlp_t ctx, uint8_t opcode, uint8_t out_buf, uint8_t n_data);

  • Functions for write data to memory

    void excelonlp_write_memory_data ( excelonlp_t *ctx, uint8_t opcode, uint32_t addr, uint8_t c_data);

Examples Description

This application writes in RAM memory and read from RAM memory.

The demo application is composed of two sections :

Application Init

Initializes Device init


void application_init ( void )
{
    log_cfg_t log_cfg;
    excelonlp_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    excelonlp_cfg_setup( &cfg );
    EXCELONLP_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    excelonlp_init( &excelonlp, &cfg );
}

Application Task

Reads device ID, writes 6-bytes (MikroE) to memory and reads 6-bytes from memory


void application_task ( )
{
    uint8_t out_buf[ 20 ] = { 0 };
    uint8_t cnt;
    char memory_data[ 3 ];
    uint8_t send_buffer[ 7 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 0 };
    uint32_t memory_address = 0x00000055;

    log_printf( &logger, "Read Device ID: " );
    excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
    excelonlp_read_data( &excelonlp, EXCELONLP_OPCODE_READ_DEVICE_ID, &out_buf[ 0 ], 9 );
    for( cnt = 0; cnt < 9; cnt++ )
    {
        log_printf( &logger, " 0x", out_buf );
        Delay_100ms();
    }
    log_printf( &logger, "\r\n" );

   log_printf( &logger, "Write MikroE data." );
   excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
   for ( cnt = 0; cnt < 6; cnt++ )
   {
        excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
        excelonlp_write_memory_data( &excelonlp, EXCELONLP_OPCODE_WRITE_MEMORY_DATA, memory_address++, send_buffer[ cnt ] );
        Delay_100ms();
   }
   memory_address = 0x00000055;
   log_printf( &logger, "Read memory data: " );
   for ( cnt = 0; cnt < 6; cnt++ )
   {
       memory_data[ 0 ] = excelonlp_read_memory_data( &excelonlp, EXCELONLP_OPCODE_READ_MEMORY_DATA, memory_address++ );
       log_printf( &logger, " %d", memory_address );
       Delay_100ms();
   }
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ExcelonLP

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Color 7 Click

0

Color 7 Click is a very accurate color sensing Click board which features the TCS3472 color light to digital converter with IR filter, from ams.

[Learn More]

ECG GSR Click

0

ECG GSR Click is a complete solution for PPG, ECG and GSR application development, utilizing a specialized IC with a clinical-grade analog front-end (AFE) and electrical front-end. ECG GSR Click uses the AS7030B IC, an ultra-low power, multi-channel bio-sensor, which features a wide range of different options, making it an ideal solution for development of blood oxygen level, heart rate and galvanic skin response monitoring applications, fitness applications, for the ECG bio-authentication, and similar applications related to heart monitoring. ECG GSR Click is also equipped with the 3.5mm electrodes connectors, making it ready to be used out of the box.

[Learn More]

DIGI Isolator Click

0

DIGI Isolator Click is a compact add-on board that provides electrical isolation and signal conditioning for the serial peripheral interface and a UART interface. This board features two DCL540C01, high-speed, quad-channel digital isolators from Toshiba Semiconductor. Depending on the usage, this CMOS isolator can achieve data rates of up to 150Mbps, while withstanding up to 5kVrms voltage. DIGI Isolator Click is designed to isolate two additional IO pins besides SPI and UART interfaces.

[Learn More]