TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141686 times)
  2. FAT32 Library (74756 times)
  3. Network Ethernet Library (59207 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44523 times)
  7. GSM click (31196 times)
  8. mikroSDK (30095 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

FRAM 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: FRAM

Downloaded: 419 times

Not followed.

License: MIT license  

FRAM 2 Click carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "FRAM 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "FRAM 2 Click" changes.

Do you want to report abuse regarding "FRAM 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


FRAM 2 Click

FRAM 2 Click carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules. It offers much faster alternative to common serial FLASH and EEPROM modules, which use the conventional technologies.

fram2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the FRAM2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for FRAM2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void fram2_cfg_setup ( fram2_cfg_t *cfg );

  • Initialization function.

    FRAM2_RETVAL fram2_init ( fram2_t ctx, fram2_cfg_t cfg );

  • Click Default Configuration function.

    void fram2_default_cfg ( fram2_t *ctx );

Example key functions :

  • This function reads content from address and saves it to buffer.

    void fram2_read( fram2_t ctx, uint32_t address, uint8_t buffer, uint8_t count );

  • This function writes content from buffer to address.

    void fram2_write( fram2_t ctx, uint32_t address, uint8_t buffer, uint8_t counter );

  • This function reads content of FRAM status register.

    uint8_t fram2_read_status( fram2_t *ctx );

Examples Description

This example performs write & read operation to certain register.

The demo application is composed of two sections :

Application Init

Initiazlize device and enable write operation.


void application_init ( void )
{
    log_cfg_t log_cfg;
    fram2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    fram2_cfg_setup( &cfg );
    FRAM2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    fram2_init( &fram2, &cfg );
    fram2_default_cfg ( &fram2 );

}

Application Task

Write value 42 to register 0x10 and check if operation was done properly.


void application_task ( void )
{
    log_info( &logger, "Writing value 42 into register 0x10..." );  
    test_addr = 0x0010;  
    fram2_write( &fram2, test_addr, data_to_write, 3 );
    Delay_ms ( 200 );

    log_info( &logger, "Reading from register 0x10..." );
    memset( read_buf, 0, 32 );
    Delay_ms ( 500 );

    fram2_read( &fram2, test_addr, read_buf, 3 );
    log_printf ( &logger, "Read value: %s\r\n\n", read_buf );
    Delay_ms ( 500 );
} 

Note

If user doesn't see declarations of some variables in application_init() and application_task(), they are declared as global in main.c file.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.FRAM2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Accel Click

0

Accel Click is an accessory board in mikroBUS form factor. It features ADXL345 3-axis accelerometer module with ultra-low power and high resolution (13-bit) measurement.

[Learn More]

Opto 5 Click

0

Opto 5 Click is a compact add-on board that provides uncomplicated safety isolation from the high voltage. This board features the FOD4216, a random phase snubberless Triac driver from ON Semiconductor.

[Learn More]

NFC Tag 5 Click

0

NFC Tag 5 Click is a compact add-on board that contains a compact NFC tag IC. This board features the M24LR64E-R, a dynamic NFC/RFID tag IC with a dual interface 64-Kbit EEPROM from STMicroelectronics. It features an I2C interface alongside an RF contactless interface operating at 13.56MHz, organized as 8192×8 bits in the I2C mode and 2048×32 bits in the ISO 15693 and ISO 18000-3 mode 1 RF mode. The M24LR64E-R also features an energy harvesting analog output and a user-configurable digital output pin, used as an interrupt, toggling during either RF write in progress or RF busy mode.

[Learn More]