TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141361 times)
  2. FAT32 Library (74205 times)
  3. Network Ethernet Library (58777 times)
  4. USB Device Library (48854 times)
  5. Network WiFi Library (44564 times)
  6. FT800 Library (44149 times)
  7. GSM click (30883 times)
  8. mikroSDK (29739 times)
  9. PID Library (27372 times)
  10. microSD click (27309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UV Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 274 times

Not followed.

License: MIT license  

Design devices that warn you of excesive ultraviolet radiation levels with UV Click. This Click boards carries the ML8511 IC that is sensitive to UV-A (365-315 nm) and UV-B (315-280 nm) rays.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UV Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UV Click" changes.

Do you want to report abuse regarding "UV Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UV Click

Design devices that warn you of excesive ultraviolet radiation levels with UV Click. This Click boards carries the ML8511 IC that is sensitive to UV-A (365-315 nm) and UV-B (315-280 nm) rays.

uv_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Uv Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Uv Click driver.

Standard key functions :

  • uv_cfg_setup Config Object Initialization function.

    void uv_cfg_setup ( uv_cfg_t *cfg ); 
  • uv_init Initialization function.

    err_t uv_init ( uv_t *ctx, uv_cfg_t *cfg );

Example key functions :

  • uv_read_adc_voltage ADC Voltage Reading function.

    err_t uv_read_adc_voltage ( uv_t *ctx, float *data_out );
  • uv_calc_index UV Index Calculation function.

    void uv_calc_index ( uv_t *ctx, float data_in, uint8_t *data_out );

Examples Description

This is a example which demonstrates the use of UV Click board.

The demo application is composed of two sections :

Application Init

Configuration of the Click and log objects.


void application_init ( void )
{
    log_cfg_t log_cfg;
    uv_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    // Click initialization.
    uv_cfg_setup( &cfg );
    UV_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == uv_init( &uv, &cfg ) )
    {
        log_info( &logger, "---- Application Init Error ----" );
        log_info( &logger, "---- Please, run program again ----" );
        for ( ; ; );
    }
    uv_set_callback_handler( &uv, application_callback );
    uv_device_enable( &uv );
    Delay_ms ( 1000 );
    uv_voltage = 0;
    uv_index = 0;
    log_info( &logger, "---- Application Init Done ----\r\n" );
}

Application Task

Reads the result of AD conversion once per second and calculates the UV index based on that. Results are being sent to the USB UART where you can track their changes.


void application_task ( void )
{
    if ( SPI_MASTER_ERROR != uv_read_adc_voltage( &uv, &uv_voltage ) )
    {
        uv_calc_index( &uv, uv_voltage, &uv_index );

        log_printf( &logger, " UV Index [0-15] : %u\r\n", ( uint16_t ) uv_index );
        log_printf( &logger, " UV ADC Voltage [V] : %.2f\r\n", uv_voltage );
        log_printf( &logger, "------------------------------\r\n" );
    }

    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Uv

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AudioMUX Click

0

AudioMUX Click is a sound processing Click board™ with digital controls, based on the TDA7468D IC. It can be used to select one of four audio input channels, adjust its frequency response and volume, and send it to the output.

[Learn More]

4x4 RGB click

1

4x4 RGB click carries a matrix of 16 RGB LEDs and a MCP1826 low dropout regulator. The LED matrix is connected to the target board microcontroller through the mikroBUS RST pin. The board uses either a 3.3V or 5V power supply.

[Learn More]

IrDA 2 Click

0

IrDA2 Click features the TFDU4101 infrared transceiver module as well as MCP2120 infrared encoder/decoder from Microchip connected with the 7.3728 MHz external crystal. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target board via UART interface and the following mikroBUS™ pins: AN, RST, CS.

[Learn More]