TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141830 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59319 times)
  4. USB Device Library (49309 times)
  5. Network WiFi Library (45108 times)
  6. FT800 Library (44676 times)
  7. GSM click (31287 times)
  8. mikroSDK (30217 times)
  9. microSD click (27664 times)
  10. PID Library (27565 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UV 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 444 times

Not followed.

License: MIT license  

UV 3 Click is an advanced ultraviolet (UV) light sensor with I2C protocol interface. The Click carries VEML6070 UVA light sensor designed by the CMOS process. UV 3 Click runs on either 3.3V or 5V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UV 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UV 3 Click" changes.

Do you want to report abuse regarding "UV 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UV 3 Click

UV 3 Click is an advanced ultraviolet (UV) light sensor with I2C protocol interface. The Click carries VEML6070 UVA light sensor designed by the CMOS process. UV 3 Click runs on either 3.3V or 5V power supply.

uv3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Uv3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Uv3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void uv3_cfg_setup ( uv3_cfg_t *cfg );

  • Initialization function.

    UV3_RETVAL uv3_init ( uv3_t ctx, uv3_cfg_t cfg );

  • Click Default Configuration function.

    void uv3_default_cfg ( uv3_t *ctx );

Example key functions :

  • Function enable sensor by sets shutdown mode bits as LOW to the target 8-bit CMD slave address.

    void uv3_enable_sensor ( uv3_t *ctx );

  • Function read UV data measurements from to the two target 8-bit slave address.

    uint16_t uv3_read_measurements ( uv3_t *ctx );

  • Function calculate UV risk level of VEML6070 sensor on UV 3 Click.

    uint8_t uv3_risk_level ( uint16_t uv_data );

Examples Description

Converts solar UV light intensity to digital data and measure UV radiation under long time solar UV exposure.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - I2C, enable sensor and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    uv3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    uv3_cfg_setup( &cfg );
    UV3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    uv3_init( &uv3, &cfg );
    uv3_default_cfg ( &uv3 );
}

Application Task

This example measures the level of the UV light and logs every 2 seconds to the terminal.


void application_task ( void )
{
    uv_data = uv3_read_measurements( &uv3 );

    risk_lvl = uv3_risk_level( uv_data );

    log_printf( &logger, " UV value  : %d\r\n ", uv_data );

    log_printf( &logger, " Radiation lvl : " );

    if ( risk_lvl == UV3_RAD_LOW )
    {
        log_printf( &logger, " Low\r\n " );
    }

    if ( risk_lvl == UV3_RAD_MODERATE )
    {
        log_printf( &logger, " Moderate\r\n " );
    }

    if ( risk_lvl == UV3_RAD_HIGH )
    {
        log_printf( &logger, " High\r\n " );
    }

    if ( risk_lvl == UV3_RAD_VERY_HIGH )
    {
        log_printf( &logger, " Very High\r\n " );
    }

    if ( risk_lvl == UV3_RAD_EXTREME )
    {
        log_printf( &logger, " Extreme\r\n " );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Uv3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Thermo 16 Click

0

Thermo 16 Click is a Click board equipped with the sensor IC, which can measure temperature measurements between -40°C and +150°C so that the temperature measurement data can be processed by the host MCU.

[Learn More]

ADC 19 Click

0

ADC 19 Click is a compact add-on board that contains a high-performance data converter. This board features the ADC122S101, a low-power two-channel CMOS 12-bit analog-to-digital converter from Texas Instruments. This SPI configurable analog-to-digital converter (ADC) is fully specified over a sample rate range of 500ksps to 1Msps, offering high reliability and performance. The converter is based on a successive-approximation register architecture with an internal track-and-hold circuit configurable to accept one or two input signals at its input channels.

[Learn More]

Magnetic linear Click

0

Magnetic linear Click is a very accurate position sensing Click board™ which utilizes the HMC1501, a magnetic field displacement sensor IC.

[Learn More]