TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137078 times)
  2. FAT32 Library (70222 times)
  3. Network Ethernet Library (56094 times)
  4. USB Device Library (46409 times)
  5. Network WiFi Library (42029 times)
  6. FT800 Library (41373 times)
  7. GSM click (29109 times)
  8. mikroSDK (26553 times)
  9. PID Library (26487 times)
  10. microSD click (25483 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

H-Bridge 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 115 times

Not followed.

License: MIT license  

This application controls the speed and direction of motor

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "H-Bridge 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "H-Bridge 2 click" changes.

Do you want to report abuse regarding "H-Bridge 2 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


H BRIDGE 2 click

< H-Bridge 2 click can be used to drive a motor by utilizing a specific configuration of the output stage MOSFETs, known as the H-bridge. This configuration enables H-Bridge 2 click to drive a motor with up to 1.2A and 15V, providing control of the speed and direction, as well as the dynamic (rheostatic) braking capability >

hbridge2_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the HBridge2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for HBridge2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void hbridge2_cfg_setup ( hbridge2_cfg_t *cfg );

  • Initialization function.

    HBRIDGE2_RETVAL hbridge2_init ( hbridge2_t ctx, hbridge2_cfg_t cfg );

Example key functions :

  • Output Set function.

    uint8_t hbridge2_set_output ( hbridge2_t *ctx, uint8_t out_state );

  • Enable function.

    void hbridge2_enable ( hbridge2_t *ctx, uint8_t state );

  • GOUT Set function.

    void hbridge2_set_gout ( hbridge2_t *ctx, uint8_t state );

Examples Description

This application controls the speed and direction of motor.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver and puts the device to enable state, and the GPIO pin to logic high state.


void application_init ( void )
{
    log_cfg_t log_cfg;
    hbridge2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    hbridge2_cfg_setup( &cfg );
    HBRIDGE2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    hbridge2_init( &hbridge2, &cfg );

    hbridge2_enable( &hbridge2, HBRIDGE2_ENABLE );
    hbridge2_set_gout( &hbridge2, HBRIDGE2_GOUT_HIGH );
    log_printf( &logger, "H-Bridge 2 is intialized\r\n" );
    Delay_ms ( 200 );
}
}

Application Task

Demonstrates the control of output pins by put output pins to different states. The outputs be changed after every 3 seconds.


void application_task ( void )
{
    hbridge2_set_output( &hbridge2, HBRIDGE2_OUT1_H_OUT2_L );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    hbridge2_set_output( &hbridge2, HBRIDGE2_OUT1_L_OUT2_H );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    hbridge2_set_output( &hbridge2, HBRIDGE2_OUT1_Z_OUT2_Z );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HBridge2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DIGI POT click

0

This program demonstrates the usage of single channel Digital Potentiometer (MCP4161) with 8 bit resolution. Voltage derived from PW pin is read by MCU's ADC. Scaled value is then displayed at PORTD LEDs. User can increase or decrease resitance by pressing buttons RB2 and RB3.&amp;lt;br/&amp;gt;

[Learn More]

Oximeter 3 click

5

Oximeter 3 Click is a compact add-on board perfectly suited for measuring the blood oxygen saturation. This board features the VCNL4020C-GS08, a fully integrated high-resolution digital biosensor from Vishay Semiconductors.

[Learn More]

CAN FD 7 click

0

CAN FD 7 Click is a compact add-on board that contains a CAN transceiver that supports both CAN and CAN FD protocols. This board features the TCAN1462, an automotive fault-protected CAN FD transceiver from Texas Instruments. It is a high-speed Controller Area Network (CAN) transceiver that meets the ISO 11898-2:2016 high-speed CAN specification and the CiA 601-4 signal improvement capability (SIC) specification.

[Learn More]