TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142095 times)
  2. FAT32 Library (75355 times)
  3. Network Ethernet Library (59524 times)
  4. USB Device Library (49548 times)
  5. Network WiFi Library (45342 times)
  6. FT800 Library (44975 times)
  7. GSM click (31467 times)
  8. mikroSDK (30535 times)
  9. microSD click (27841 times)
  10. PID Library (27631 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Driver 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 465 times

Not followed.

License: MIT license  

LED Driver 7 Click is a Click board™ equipped with the LTC3490, single cell 350mA LED driver from Analog Devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Driver 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Driver 7 Click" changes.

Do you want to report abuse regarding "LED Driver 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LED Driver 7 Click

LED Driver 7 Click is a Click board™ equipped with the LTC3490, single cell 350mA LED driver from Analog Devices.

leddriver7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : I2C type

Software Support

We provide a library for the LedDriver7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedDriver7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void leddriver7_cfg_setup ( leddriver7_cfg_t *cfg );

  • Initialization function.

    LEDDRIVER7_RETVAL leddriver7_init ( leddriver7_t ctx, leddriver7_cfg_t cfg );

Example key functions :

  • Generic write function.

    void leddriver7_generic_write ( leddriver7_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

  • Generic read function.

    void leddriver7_generic_read ( leddriver7_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

Examples Description

This application is portable lighting and rechargeable flashlights.

The demo application is composed of two sections :

Application Init

Initalizes I2C driver and writes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    leddriver7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    leddriver7_cfg_setup( &cfg );
    LEDDRIVER7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    leddriver7_init( &leddriver7, &cfg );

    Delay_ms ( 100 );
    log_printf( &logger, "-------------------- \r\n" );
    log_printf( &logger, " LED Driver 7 Click  \r\n" );
    log_printf( &logger, "-------------------- \r\n" );
}

Application Task

This example demonstrates the use of LED Driver 7 Click board, by cycling wiper positions of AD5171 Digital Potentiometer.


void application_task ( void )
{
    uint8_t n_pos = 0;
    uint8_t pos_num = 64;

    for ( n_pos = 12; n_pos < pos_num; n_pos++ )
    {
        leddriver7_generic_write( &leddriver7, LEDDRIVER7_NORM_OP_MODE, &n_pos, 1 );
        log_printf( &logger, "Position : %d \r\n", n_pos );
        Delay_ms ( 500 );
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedDriver7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Rotary B 2 Click

0

Rotary B 2 Click is a compact add-on board that allows you to add a precision input knob to your design. This board features the TLC5925, a low-power 16-channel constant-current LED sink driver from Texas Instruments that, combined with a high-quality rotary encoder from ALPS, the EC12D1564402, allows you to add a precision input knob to your design. It also features an LED ring composed of 16 individual blue LEDs that can be used to represent the encoder position more visually.

[Learn More]

Stepper 16 Click

0

Stepper 16 Click is a compact add-on board that contains a micro-stepping stepper motor driver. This board features the NCV70517, an SPI and I/O configurable motor driver for bipolar stepper motors from ON Semiconductor.

[Learn More]

PMIC Click

0

PMIC Click is a compact add-on board for efficient power management in rechargeable applications. This board features the nPM1300, an advanced Power Management Integrated Circuit (PMIC) from Nordic Semiconductor, offering integrated battery charging and advanced system power management features. The board includes an 800mA JEITA-compliant linear battery charger, two 200mA buck regulators, and configurable load switches, all housed in a compact QFN32 package.

[Learn More]