TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137103 times)
  2. FAT32 Library (70236 times)
  3. Network Ethernet Library (56126 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42079 times)
  6. FT800 Library (41389 times)
  7. GSM click (29116 times)
  8. mikroSDK (26563 times)
  9. PID Library (26503 times)
  10. microSD click (25487 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MCP16331 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 79 times

Not followed.

License: MIT license  

MCP16331 click functions as a buck-boost voltage regulator, a switching regulator topology that combines principles of the buck conversion (step-down) and the boost conversion (step-up).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MCP16331 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MCP16331 click" changes.

Do you want to report abuse regarding "MCP16331 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


MCP16331 click

MCP16331 click functions as a buck-boost voltage regulator, a switching regulator topology that combines principles of the buck conversion (step-down) and the boost conversion (step-up).

mcp16331_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Mcp16331 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mcp16331 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void mcp16331_cfg_setup ( mcp16331_cfg_t *cfg );

  • Initialization function.

    MCP16331_RETVAL mcp16331_init ( mcp16331_t ctx, mcp16331_cfg_t cfg );

Example key functions :

  • mcp16331 set vout

    void mcp16331_set_vout ( mcp16331_t *ctx, uint16_t millivolts_vout );

Examples Description

This application is buck-boost voltage regulator.

The demo application is composed of two sections :

Application Init

Sends hal pointers, and initializes click


void application_init ( void )
{
    log_cfg_t log_cfg;
    mcp16331_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mcp16331_cfg_setup( &cfg );
    MCP16331_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mcp16331_init( &mcp16331, &cfg );
}

Application Task

Switches between 5 V and 12 V values


void application_task ( void )
{
    mcp16331_set_vout( &mcp16331, 5000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    mcp16331_set_vout( &mcp16331, 12000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mcp16331

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Buck 19 click

0

Buck 19 Click is a compact add-on board that steps down the voltage from its input (supply) to its output (load). This board features the STPD01, a programmable synchronous buck converter from STMicroelectronics, providing power supply in applications following USB power delivery specifications. The STPD01 provides the desired voltage levels required by USB power delivery systems (USB PD 3.0) via I2C serial interface up to 60W output power, more precisely voltages in the range of 3V to 20V with a step of 20mV minimum, and currents from 0.1A to 3A with a minimum in steps of 50mA. It also offers advanced protection features such as overvoltage, overcurrent, and overtemperature detections.

[Learn More]

Temp-Hum 11 click

5

Temp-hum 11 click is a temperature and humidity sensing Click board, equipped with the HDC1080, a high accuracy digital humidity, and temperature sensor.

[Learn More]

LED Driver 12 click

0

LED Driver 12 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the PCA9532, a 16-bit I2C-configurable I/O expander optimized for dimming LEDs in 256 discrete Red/Green/Blue (RGB) steps from NXP Semiconductors. The PCA9532 offers high efficiency, supporting up to 16 LED channels and delivering a maximum of up to 25mA of LED current per channel. It contains an internal oscillator with two user-programmable blink rates and duty cycles coupled to the output PWM. Any bits not used for controlling the LEDs can be used for GPIO expansion, which provides a simple solution when additional I/O is needed for some sensors, push-buttons, or alarm monitoring. This Click board™ is suitable for color mixing and backlight application for amusement products, LED status signalization, home automation projects, and many more.

[Learn More]