TOP Contributors

  1. MIKROE (2662 codes)
  2. Alcides Ramos (357 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137052 times)
  2. FAT32 Library (70177 times)
  3. Network Ethernet Library (56054 times)
  4. USB Device Library (46374 times)
  5. Network WiFi Library (41992 times)
  6. FT800 Library (41324 times)
  7. GSM click (29083 times)
  8. mikroSDK (26522 times)
  9. PID Library (26466 times)
  10. microSD click (25449 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Single Cell click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Linear

Downloaded: 98 times

Not followed.

License: MIT license  

The Single Cell click is a Click board™ which features MCP16251 synchronous boost regulator with true load disconnect and MCP1811A low-dropout (LDO) linear regulator that provide an ultra low quiescent current during device operation of about 250nA and can be shut down for 5nA (typical) supply current draw. Given the potential applications of these features, the Single Cell click can be used for one, two and three-cell Alkaline and NiMH/NiCd portable products, solar cell applications, personal care and medical products, smartphones, MP3 players, wireless sensors and many more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Single Cell click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Single Cell click" changes.

Do you want to report abuse regarding "Single Cell click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Single Cell click

The Single Cell click is a Click board™ which features MCP16251 synchronous boost regulator with true load disconnect and MCP1811A low-dropout (LDO) linear regulator that provide an ultra low quiescent current during device operation of about 250nA and can be shut down for 5nA (typical) supply current draw. Given the potential applications of these features, the Single Cell click can be used for one, two and three-cell Alkaline and NiMH/NiCd portable products, solar cell applications, personal care and medical products, smartphones, MP3 players, wireless sensors and many more.

singlecell_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the SingleCell Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for SingleCell Click driver.

Standard key functions :

  • Config Object Initialization function.

    void singlecell_cfg_setup ( singlecell_cfg_t *cfg );

  • Initialization function.

    SINGLECELL_RETVAL singlecell_init ( singlecell_t ctx, singlecell_cfg_t cfg );

  • Click Default Configuration function.

    void singlecell_default_cfg ( singlecell_t *ctx );

Example key functions :

  • Set power mode function.

    void singlecell_set_power_mode ( singlecell_t *ctx, uint8_t en_mode );

Examples Description

Demo application is used to shows basic controls Single Cell click board.

The demo application is composed of two sections :

Application Init

Initializes GPIO and LOG structures, set CS pin as output and start write log. Initialization driver enable's - GPIO, also write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    singlecell_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf(&logger, "---- Application Init ----\r\n");

    //  Click initialization.

    singlecell_cfg_setup( &cfg );
    SINGLECELL_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    singlecell_init( &singlecell, &cfg );
    singlecell_default_cfg ( &singlecell );

    log_printf(&logger, "-------------------------\r\n");
    log_printf(&logger, "    Single Cell click    \r\n");
    log_printf(&logger, "-------------------------\r\n");

    Delay_ms ( 100 );
}

Application Task

This is a example which demonstrates the use of Single Cell board. This example shows the automatic control of the Single Cell click, enable and disable power the regulator output on 10 sec.


void application_task ( void )
{
    log_printf(&logger, "         Enable\r\n");
    singlecell_set_power_mode ( &singlecell, SINGLECELL_ENABLE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf(&logger, "         Disable\r\n");
    singlecell_set_power_mode ( &singlecell, SINGLECELL_DISABLE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SingleCell

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

GNSS 15 click

0

GNSS 15 Click is a compact add-on board for advanced automotive navigation and tracking applications. This board features the TESEO-VIC3DA, an automotive GNSS dead-reckoning module from STMicroelectronics. This module combines a 6-axis IMU with multi-constellation satellite reception, offering exceptional accuracy and dead-reckoning capabilities. It stands out for its rapid time-to-first-fix and the ability to receive firmware updates for enhanced performance. Designed for flexibility, it supports both UART and I2C communications, includes pins for precise odometer readings, and features an SMA antenna connector for superior signal quality.

[Learn More]

Proximity 9 click

0

Proximity 9 click is a very accurate and reliable proximity sensing (PS) and ambient light sensing (ALS) device, equipped with the VCNL4040, an integrated PS and ALS sensor which features the Filtron™ technology.

[Learn More]

STSPIN233 click

0

STSPIN233 click is a complete solution for a 3-phase integrated motor driver, based on the STSPIN233, Low voltage 3-phase integrated motor driver.

[Learn More]