TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141704 times)
  2. FAT32 Library (74779 times)
  3. Network Ethernet Library (59221 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44537 times)
  7. GSM click (31203 times)
  8. mikroSDK (30104 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Smart DOF Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 488 times

Not followed.

License: MIT license  

SmartDOF Click features a highly advanced integrated system-in-package (SiP) solution with three different sensors on-chip: triaxial accelerometer, magnetometer, and triaxial gyroscope are all integrated on the same die, along with the powerful 32-bit ARM® Cortex®-M0+ MCU. Thanks to the integrated MCU, the BN080 SiP provides extensive signal processing.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Smart DOF Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Smart DOF Click" changes.

Do you want to report abuse regarding "Smart DOF Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Smart DOF Click

SmartDOF Click features a highly advanced integrated system-in-package (SiP) solution with three different sensors on-chip: triaxial accelerometer, magnetometer, and triaxial gyroscope are all integrated on the same die, along with the powerful 32-bit ARM® Cortex®-M0+ MCU. Thanks to the integrated MCU, the BN080 SiP provides extensive signal processing.

smartdof_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the SmartDof Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for SmartDof Click driver.

Standard key functions :

  • Config Object Initialization function.

    void smartdof_cfg_setup ( smartdof_cfg_t *cfg );

  • Initialization function.

    SMARTDOF_RETVAL smartdof_init ( smartdof_t ctx, smartdof_cfg_t cfg );

  • Click Default Configuration function.

    void smartdof_default_cfg ( smartdof_t *ctx );

Example key functions :

  • This function waits for INT pin to go LOW, receives 4 header bytes and than parses header bytes to get data length of entire packet and stores header bytes to header buffer

    uint8_t smartdof_receive_packet ( smartdof_t *ctx, uint32_t n_cycles_timeout )

  • This function receives get feature response report bytes

    uint8_t smartdof_get_feature_response ( smartdof_t ctx, smartdof_sfc_t sfc );

  • This function sends set feature request report to device

    void smartdof_set_feature_command ( smartdof_t ctx, smartdof_sfc_t sfc );

Examples Description

This Click integrates a triaxial accelerometer, triaxial gyroscope and magnetometer. It can provide very accurate and precise 3D acceleration, magnetic, and angular velocity data, in real-time.

The demo application is composed of two sections :

Application Init

Initializes I2C driver and Smart DOF device


void application_init ( void )
{
    uint8_t p;
    log_cfg_t log_cfg;
    smartdof_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    smartdof_cfg_setup( &cfg );
    SMARTDOF_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    smartdof_init( &smartdof, &cfg );

    if ( smartdof_default_cfg ( &smartdof ) !=0 )
    {
        log_info( &logger, "Error during default configuration" );
    }
}

Application Task

Executes one of 'smartdof_xxx_task()' additional functions


void application_task ( void )
{
    accelerometer_task( &smartdof, &smartdof_sfc );
}  

Note

Additional Functions :
- accelerometer_task() - initializes accelerometer reports in 100000 micro second intervals, receives, parses and logs report data
- gyroscope_task() - initializes gyroscope calibrated reports in 100000 micro second intervals, receives, parses and logs report data
- magnetometer_task() - initializes magnetometer calibrated reports in 100000 micro second intervals, receives, parses and logs report data

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SmartDof

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Heart rate 3 Click

0

Heart rate 3 Click is a mikroBUS add-on board whose functionality is determined by two components: an OSRAM’s SFH7050 pulse oximetry and heart rate monitoring module, and a TI AFE4404 (analong-front-end) IC specialized for bio-sensing.

[Learn More]

TDC Click

0

TDC Click is a compact add-on board that recognizes events and provides a digital representation of the time they occurred. This board features the TDC7200, a time-to-digital converter from Texas Instruments. The Time to Digital Converter (TDC) performs the function of a stopwatch and measures the elapsed time (time-of-flight or TOF) between a START pulse and up to five STOP pulses. The ability to measure from START to multiple STOPs gives users the flexibility to select which STOP pulse yields the best echo performance.

[Learn More]

Zero-Cross Click

0

Zero-Cross Click is a compact add-on board that has the ability to detect the change from positive to negative or negative to a positive level of a sinusoidal waveform. This board features circuitry that provides Zero Crossing Detection (ZCD). Whenever the sine wave crosses the ground potential, the output shifts from HIGH logic to LOW or vice-versa.

[Learn More]