TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142145 times)
  2. FAT32 Library (75469 times)
  3. Network Ethernet Library (59583 times)
  4. USB Device Library (49582 times)
  5. Network WiFi Library (45371 times)
  6. FT800 Library (45068 times)
  7. GSM click (31487 times)
  8. mikroSDK (30592 times)
  9. microSD click (27907 times)
  10. PID Library (27641 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

SHT1x Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 464 times

Not followed.

License: MIT license  

This Click measures temperature and humidity

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "SHT1x Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "SHT1x Click" changes.

Do you want to report abuse regarding "SHT1x Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


SHT1x Click

SHT11 Click is an accessory board in mikroBus™ form factor. It includes a digital humidity and temperature sensor SHT11.

sht1x_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : GPIO type

Software Support

We provide a library for the Sht1x Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Sht1x Click driver.

Standard key functions :

  • Config Object Initialization function.

    void sht1x_cfg_setup ( sht1x_cfg_t *cfg );

  • Initialization function.

    SHT1X_RETVAL sht1x_init ( sht1x_t ctx, sht1x_cfg_t cfg );

  • Click Default Configuration function.

    void sht1x_default_cfg ( sht1x_t *ctx );

Example key functions :

  • Set pin on output.

    void sht1x_output_sda ( sht1x_t ctx, sht1x_cfg_t cfg );

  • Set pin on input.

    void sht1x_input_sda ( sht1x_t ctx, sht1x_cfg_t cfg );

  • Set SDA high function.

    void sht1x_sda_high ( sht1x_t *ctx );

Examples Description

This Click measures temperature and humidity.

The demo application is composed of two sections :

Application Init

Initialization driver enables GPIO.


void application_init ( void )
{
    log_cfg_t log_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    sht1x_cfg_setup( &cfg );
    SHT1X_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    sht1x_init( &sht1x, &cfg );
}

Application Task

This example demonstrates the use of SHT1x Click board by measuring temperature and humidity, and displays the results on USART terminal.


void application_task ( void )
{
    sht1x_read_results( &temperature, &humidity );
    log_printf( &logger, " Temperature: %.2f ", temperature );
    log_printf( &logger, " C \r\n" );

    log_printf( &logger, " Humidity: %.2f ", humidity );
    log_printf( &logger, " %% \r\n", humidity );

    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Sht1x

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

UVC Light Click

0

UVC Light Click is Click board™ with ultraviolet LEDs with 275nm wavelength which can be complemented with UVC Click for measuring exact dose of UV radiation. UVC radiation refers to wavelengths shorter than 280 nm. Because of the spectral sensitivity of DNA, only the UVC region demonstrates significant germicidal properties. As evident by multiple research studies and reports, when biological organisms are exposed to deep UV light in the range of 200 nm to 300 nm it is absorbed by DNA, RNA, and proteins. With two 0.7W (1.4W combined power) UVC Light Click is a perfect solution as a small surface disinfection tool.

[Learn More]

LR 14 Click

0

LR 14 Click is a compact add-on board for low-power, long-range wireless communication in IoT networks. This board features the RAK3172, a Class A/B/C LoRaWAN 1.0.3-compliant module from RAKwireless Technology, featuring the STM32WLE5CC ARM Cortex-M4 32-bit chip. This board supports LoRaWAN and LoRa Point-to-Point communication modes and integrates multiple frequency bands for flexibility across various regions. Key features include UART, SPI, and I2C interfaces, a USB Type-C connector for power and configuration, and a rechargeable battery option for standalone operation.

[Learn More]

Color 3 click

1

Color 3 click is a mikroBUS add-on board with a TCS3771 color sensor (also known as a light-to-digital converter) and a narrow beam Infrared LED. The circuit can also function as a proximity sensor. TCS3771 is a RGBC sensor: it can detect Red, Green, Blue and clear light. The IC performs well under a variety of lighting conditions.

[Learn More]