TOP Contributors

  1. MIKROE (2658 codes)
  2. Alcides Ramos (356 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136938 times)
  2. FAT32 Library (70059 times)
  3. Network Ethernet Library (56015 times)
  4. USB Device Library (46330 times)
  5. Network WiFi Library (41942 times)
  6. FT800 Library (41264 times)
  7. GSM click (29050 times)
  8. mikroSDK (26464 times)
  9. PID Library (26440 times)
  10. microSD click (25398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

I2C 1-Wire click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: 1-Wire

Downloaded: 191 times

Not followed.

License: MIT license  

I2C 1-Wire click carries DS2482-800, a bridge device that performs bidirectional conversions between I2C masters and 1-Wire slave devices. These can be EEPROM chips, temperature sensors and similar devices that have momentary high source current modes.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "I2C 1-Wire click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "I2C 1-Wire click" changes.

Do you want to report abuse regarding "I2C 1-Wire click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


I2C 1 Wire click

I2C 1-Wire click carries DS2482-800, a bridge device that performs bidirectional conversions between I2C masters and 1-Wire slave devices. These can be EEPROM chips, temperature sensors and similar devices that have momentary high source current modes.

i2c1wire_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : I2C type

Software Support

We provide a library for the I2C1Wire Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for I2C1Wire Click driver.

Standard key functions :

  • i2c1wire_cfg_setup Config Object Initialization function.

    void i2c1wire_cfg_setup ( i2c1wire_cfg_t *cfg ); 
  • i2c1wire_init Initialization function.

    err_t i2c1wire_init ( i2c1wire_t *ctx, i2c1wire_cfg_t *cfg );

Example key functions :

  • i2c1wire_write_byte_one_wire This function writes one byte to the click module.

    void i2c1wire_write_byte_one_wire ( i2c1wire_t *ctx, uint8_t input );
  • i2c1wire_read_byte_one_wire This function reads one byte from the click module.

    uint8_t i2c1wire_read_byte_one_wire ( i2c1wire_t *ctx );
  • i2c1wire_one_wire_reset This function does a hardware reset of the click module.

    void i2c1wire_one_wire_reset ( i2c1wire_t *ctx );

Examples Description

This example showcases how to initialize, confiure and use the I2C 1-Wire click. The click is a I2C (host) to 1-Wire interface (slave). In order for the example to work one or more 1-Wire (GPIO) click modules are required. Gnd goes to gnd, power goes to power and the cha- nnels are there to read data from connected modules.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and click modules.


void application_init ( void )
{
    log_cfg_t log_cfg;
    i2c1wire_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.
    i2c1wire_cfg_setup( &cfg );
    I2C1WIRE_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    i2c1wire_init( &i2c1wire, &cfg );
    Delay_1sec( );
}

Application Task

This function reads all of the channels on the click module and displays any data it acqu- ires from them with a 100 millisecond delay.


void application_task ( void )
{
    uint8_t chan_state = 0;
    uint8_t cnt_chan = 0;
    uint8_t cnt_val = 0;
    uint8_t id_code[ 9 ] = { 0 };

    chan_state = 1;

    i2c1wire_soft_reset( &i2c1wire );
    Delay_10ms( );
    i2c1wire_set_config( &i2c1wire, I2C1WIRE_CONFIG_1WS_HIGH |
                                    I2C1WIRE_CONFIG_SPU_HIGH |
                                    I2C1WIRE_CONFIG_APU_LOW );
    Delay_10ms( );

    for ( cnt_chan = 0; cnt_chan < 8; cnt_chan++ )
    {
        i2c1wire_set_channel( &i2c1wire, cnt_chan );
        i2c1wire_one_wire_reset( &i2c1wire );
        Delay_10ms( );

        i2c1wire_write_byte_one_wire( &i2c1wire, I2C1WIRE_WIRE_COMMAND_READ_ROM );
        Delay_10ms();

        for ( cnt_val = 8; cnt_val > 0; cnt_val-- )
        {
            id_code[ cnt_val ] = i2c1wire_read_byte_one_wire( &i2c1wire );

            if ( id_code[ cnt_val ] == I2C1WIRE_WIRE_RESULT_OK )
            {
                log_printf( &logger, "\r\n Channel %d : No device on the channel\r\n", ( uint16_t ) cnt_chan );
                Delay_100ms( );
                break;
            }
            else if ( chan_state )
            {
                log_printf( &logger, " Channel %d : ID = 0x", ( uint16_t ) cnt_chan );
                chan_state = 0;
            }

            log_printf( &logger, "%d", ( uint16_t ) id_code[ cnt_val ] );
            Delay_10ms( );
        }

        log_printf( &logger, "\r\n---------------------------------------\r\n" );
    }

    log_printf( &logger, "***\r\n" );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.I2C1Wire

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Thermo 25 click

0

Thermo 25 Click is a compact add-on board that accurately measures temperature. This board features the TMP127-Q1, a high-precision digital temperature sensor from Texas Instruments. This SPI-configurable factory-calibrated temperature sensor has a high accuracy of 0.8°C, supporting an ambient temperature range from -55°C to 175°C. It features a 14-bit signed temperature resolution (0.03125 °C per LSB) while operating over a supply range.

[Learn More]

NB IoT 2 click

0

NB IoT 2 Click is a compact add-on board that contains a compact LTE Cat NB2 module with ultra-low power consumption. This board features the BC66-NA, a high-performance, multi-band LTE Cat NB2 module with extremely low power consumption from Quectel Wireless Solutions.

[Learn More]

Thermo 28 click

0

Thermo 28 Click is a compact add-on board that accurately measures temperature. This board features the ams AG’s AS6221, a high-accuracy digital temperature sensor. The AS6221 consists of a Si bandgap temperature factory-calibrated sensor, 16-bit ADC, and a digital signal processor, offering a high accuracy of ±0.9°C. It provides temperature data to the host controller through a compatible I2C interface, reliability, user-selectable I2C addresses, and alert functionality, which triggers an interrupt to protect the device from excessive temperatures.

[Learn More]