TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142085 times)
  2. FAT32 Library (75313 times)
  3. Network Ethernet Library (59507 times)
  4. USB Device Library (49526 times)
  5. Network WiFi Library (45290 times)
  6. FT800 Library (44928 times)
  7. GSM click (31444 times)
  8. mikroSDK (30469 times)
  9. microSD click (27804 times)
  10. PID Library (27625 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 9 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 410 times

Not followed.

License: MIT license  

The TSYS01 is a single chip, versatile, new technology temperature sensor. The TSYS01 provides factory calibrated temperature information. It includes a temperature sensing chip and a 24 bit Σ-ADC.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 9 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 9 Click" changes.

Do you want to report abuse regarding "Thermo 9 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Thermo 9 Click

The TSYS01 is a single chip, versatile, new technology temperature sensor. The TSYS01 provides factory calibrated temperature information. It includes a temperature sensing chip and a 24 bit Σ-ADC.

thermo9_click.png

Click Product page


Click library

  • Author : Jovan Stajkovic
  • Date : Jan 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the Thermo9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thermo9 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void thermo9_cfg_setup ( thermo9_cfg_t *cfg );

  • Initialization function.

    THERMO9_RETVAL thermo9_init ( thermo9_t ctx, thermo9_cfg_t cfg );

Example key functions :

  • Function is used to send the command to the device.

    void thermo9_send_cmd ( thermo9_t *ctx, uint8_t cmd_byte );

  • Function resets and calibrates the device in order for it to work properly.

    void thermo9_calibation ( thermo9_t *ctx );

  • Function is used to read temperature in degree centigrade.

    float thermo9_read_temp ( thermo9_t *ctx );

Examples Description

This demoapp measures temperature every 3 seconds.

The demo application is composed of two sections :

Application Init

Logger initialization, Click initialization and calibration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    thermo9_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    thermo9_cfg_setup( &cfg );
    THERMO9_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thermo9_init( &thermo9, &cfg );
    Delay_ms ( 100 );
    log_printf( &logger, "---------------------\r\n" );
    log_printf( &logger, "    Thermo 9 Click   \r\n" );
    log_printf( &logger, "---------------------\r\n" );
    thermo9_calibation( &thermo9 );
    Delay_ms ( 100 );
    log_printf( &logger, "      Calibrated     \r\n" );
    log_printf( &logger, "---------------------\r\n" );
}

Application Task

This example shows capabilities of Thermo 9 Click by measuring temperature every 3 seconds and displaying temperature in degrres Celsius via USART terminal.


void application_task ( void )
{
    //  Task implementation.
    temp_val = thermo9_read_temp( &thermo9 );
    log_printf( &logger, "-- Temperature : %.2f °C\r\n", temp_val );

    log_printf( &logger, "-----------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

Note

Calibration function must be used once in order to get calibrations!

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo9

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DAC 4 click

5

DAC 4 Click carries Microchip’s MCP4728 IC, a Quad Digital-to-Analog Converter with nonvolatile (EEPROM) Memory. The digital value is converted to the appropriate voltage level in the range between GND and VCC, which is proportional to the received 12-bit number.

[Learn More]

LED Flash click

0

LED Flash click functions as a high power LED flash, and carries the CAT3224 flash LED driver. The click is designed to run on a 5V power supply. It communicates with the target microcontroller over the following pins on the mikroBUS line: AN, RST, PWM, and INT.

[Learn More]

MINI-M0 STM32 Board Examples

5

Examples for MINI-M0 STM32 Board. Provided examples demonstrate working with on-board LEDs, internal ADC and UART module via the USB UART interface.

[Learn More]