TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142085 times)
  2. FAT32 Library (75313 times)
  3. Network Ethernet Library (59507 times)
  4. USB Device Library (49526 times)
  5. Network WiFi Library (45290 times)
  6. FT800 Library (44928 times)
  7. GSM click (31444 times)
  8. mikroSDK (30468 times)
  9. microSD click (27804 times)
  10. PID Library (27625 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GSM Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: GSM/LTE

Downloaded: 555 times

Not followed.

License: MIT license  

GSM Click is a compact and powerful GSM cellular network communication solution, featuring the GSM/GPRS Telit GL865-QUAD module. This module features a full set of options for the cellular networking and communication, such as the network status indication, jamming detection, embedded TCP/IP stack, including TCP, IP, UDP, SMTP, ICMP and FTP protocols, full GPRS class 10 implementation; GSM supplementary functions such as the call barring, waiting, forwarding, and holding, calling line identification presentation or restriction (CLIP/CLIR), integrated voice communication codecs, and more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GSM Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GSM Click" changes.

Do you want to report abuse regarding "GSM Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GSM Click

GSM Click is a compact and powerful GSM cellular network communication solution, featuring the GSM/GPRS Telit GL865-QUAD module. This module features a full set of options for the cellular networking and communication, such as the network status indication, jamming detection, embedded TCP/IP stack, including TCP, IP, UDP, SMTP, ICMP and FTP protocols, full GPRS class 10 implementation; GSM supplementary functions such as the call barring, waiting, forwarding, and holding, calling line identification presentation or restriction (CLIP/CLIR), integrated voice communication codecs, and more.

gsm_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : May 2023.
  • Type : UART type

Software Support

We provide a library for the GSM Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GSM Click driver.

Standard key functions :

  • gsm_cfg_setup Config Object Initialization function.

    void gsm_cfg_setup ( gsm_cfg_t *cfg );
  • gsm_init Initialization function.

    err_t gsm_init ( gsm_t *ctx, gsm_cfg_t *cfg );

Example key functions :

  • gsm_set_sim_apn This function sets APN for sim card.

    void gsm_set_sim_apn ( gsm_t *ctx, uint8_t *sim_apn );
  • gsm_send_sms_text This function sends text message to a phone number.

    void gsm_send_sms_text ( gsm_t *ctx, uint8_t *phone_number, uint8_t *sms_text );
  • gsm_send_sms_pdu This function sends text message to a phone number in PDU mode.

    err_t gsm_send_sms_pdu ( gsm_t *ctx, uint8_t *service_center_number, uint8_t *phone_number, uint8_t *sms_text );

Example Description

Application example shows device capability of connecting to the network and sending SMS or TCP/UDP messages using standard "AT" commands.

The demo application is composed of two sections :

Application Init

Initializes the driver, tests the communication by sending "AT" command, and after that restarts the device.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gsm_cfg_t gsm_cfg;  /**< Click config object. */

    /**
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX
     * are defined as HAL_PIN_NC, you will
     * need to define them manually for log to work.
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gsm_cfg_setup( &gsm_cfg );
    GSM_MAP_MIKROBUS( gsm_cfg, MIKROBUS_1 );
    if ( UART_ERROR == gsm_init( &gsm, &gsm_cfg ) )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    gsm_process( );
    gsm_clear_app_buf( );

    // Check communication
    gsm_send_cmd( &gsm, GSM_CMD_AT );
    error_flag = gsm_rsp_check( GSM_RSP_OK );
    gsm_error_check( error_flag );

    // Restart device
    #define RESTART_DEVICE "1,1"
    gsm_send_cmd_with_par( &gsm, GSM_CMD_CFUN, RESTART_DEVICE );
    error_flag = gsm_rsp_check( GSM_RSP_OK );
    gsm_error_check( error_flag );

    log_info( &logger, " Application Task " );
    example_state = GSM_CONFIGURE_FOR_NETWORK;
}

Application Task

Application task is split in few stages:

  • GSM_CONFIGURE_FOR_NETWORK: Sets configuration to device to be able to connect to the network.
  • GSM_WAIT_FOR_CONNECTION: Waits for the network registration indicated via CREG URC event and then checks the connection status.
  • GSM_CONFIGURE_FOR_EXAMPLE: Sets the device configuration for sending SMS or TCP/UDP messages depending on the selected demo example.
  • GSM_EXAMPLE: Depending on the selected demo example, it sends an SMS message (in PDU or TXT mode) or TCP/UDP message. By default, the TCP/UDP example is selected.

void application_task ( void ) 
{
    switch ( example_state )
    {
        case GSM_CONFIGURE_FOR_NETWORK:
        {
            if ( GSM_OK == gsm_configure_for_network( ) )
            {
                example_state = GSM_WAIT_FOR_CONNECTION;
            }
            break;
        }
        case GSM_WAIT_FOR_CONNECTION:
        {
            if ( GSM_OK == gsm_check_connection( ) )
            {
                example_state = GSM_CONFIGURE_FOR_EXAMPLE;
            }
            break;
        }
        case GSM_CONFIGURE_FOR_EXAMPLE:
        {
            if ( GSM_OK == gsm_configure_for_example( ) )
            {
                example_state = GSM_EXAMPLE;
            }
            break;
        }
        case GSM_EXAMPLE:
        {
            gsm_example( );
            break;
        }
        default:
        {
            log_error( &logger, " Example state." );
            break;
        }
    }
}

Note

In order for the examples to work, user needs to set the APN and SMSC (SMS PDU mode only) of entered SIM card as well as the phone number (SMS mode only) to which he wants to send an SMS. Enter valid values for the following macros: SIM_APN, SIM_SMSC and PHONE_NUMBER_TO_MESSAGE.

Example:

  • SIM_APN "internet"
  • SIM_SMSC "+381610401"
  • PHONE_NUMBER_TO_MESSAGE "+381659999999"

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GSM

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

H-Bridge Click

0

H-Bridge Click is a high-efficiency dual H-bridge driver Click board™, capable of providing reasonably high current while driving the connected load with up to 7V. Since the used driver IC has two full H-bridge channels, this Click board™ is an ideal solution for driving smaller bipolar stepper motors. H-Bridge Click provides driving in both directions, with an addition of the brake mode, and the high impedance mode (Hi-Z). Overshoot current suppression algorithm protects the output stages from being damaged if both high-side and low-side MOSFETs on a single H-bridge channel become conductive.

[Learn More]

3D Hall 9 Click

0

3D Hall 9 Click is a compact add-on board used to detect the strength of a magnetic field in all three dimensions. This board features the ALS31300, a 3D linear Hall-effect sensor with digital output and advanced low power management from Allegro Microsystems. The ALS31300 features an I2C interface, enabling it to be easily configured by MCU with the measurement data provided in digital format of 12-bits corresponding to the magnetic field measured in each X, Y, and Z axes.

[Learn More]

Buck 11 Click

0

Buck 11 Click is a high-efficiency step-down converter which provides 3.3V on its output, derived from the connected power supply voltage, in the range from 4.2V to 60V.

[Learn More]