TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136880 times)
  2. FAT32 Library (70003 times)
  3. Network Ethernet Library (55999 times)
  4. USB Device Library (46305 times)
  5. Network WiFi Library (41929 times)
  6. FT800 Library (41208 times)
  7. GSM click (29013 times)
  8. PID Library (26423 times)
  9. mikroSDK (26398 times)
  10. microSD click (25386 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GSM 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: GSM/LTE

Downloaded: 135 times

Not followed.

License: MIT license  

GSM3 click is a complete quad-band GSM cellular network communication solution, featuring the SIM800H-BT, a quad-band 2G GSM/GPRS module. This module is GSM Phase 2/2+ compliant, featuring a full set of options for the cellular networking and communication. It has a network status indication, jamming detection, embedded internet protocols including TCP/IP, UDP, FTP, PPP, HTTP, E-mail, MMS, and more. It also features advanced voice/audio functions, including the FM radio interface. The GPRS multislot class 12 implementation allows 4 uplink and 4 downlink slots, with 5 slots open in total.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GSM 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GSM 3 click" changes.

Do you want to report abuse regarding "GSM 3 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GSM 3 click

GSM3 click is a complete quad-band GSM cellular network communication solution, featuring the SIM800H-BT, a quad-band 2G GSM/GPRS module. This module is GSM Phase 2/2+ compliant, featuring a full set of options for the cellular networking and communication. It has a network status indication, jamming detection, embedded internet protocols including TCP/IP, UDP, FTP, PPP, HTTP, E-mail, MMS, and more. It also features advanced voice/audio functions, including the FM radio interface. The GPRS multislot class 12 implementation allows 4 uplink and 4 downlink slots, with 5 slots open in total.

gsm3_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : May 2023.
  • Type : UART type

Software Support

We provide a library for the GSM3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GSM3 Click driver.

Standard key functions :

  • gsm3_cfg_setup Config Object Initialization function.

    void gsm3_cfg_setup ( gsm3_cfg_t *cfg );
  • gsm3_init Initialization function.

    err_t gsm3_init ( gsm3_t *ctx, gsm3_cfg_t *cfg );

Example key functions :

  • gsm3_set_sim_apn This function sets APN for sim card.

    void gsm3_set_sim_apn ( gsm3_t *ctx, uint8_t *sim_apn );
  • gsm3_send_sms_text This function sends text message to a phone number.

    void gsm3_send_sms_text ( gsm3_t *ctx, uint8_t *phone_number, uint8_t *sms_text );
  • gsm3_send_sms_pdu This function sends text message to a phone number in PDU mode.

    err_t gsm3_send_sms_pdu ( gsm3_t *ctx, uint8_t *service_center_number, uint8_t *phone_number, uint8_t *sms_text );

Example Description

Application example shows device capability of connecting to the network and sending SMS or TCP/UDP messages using standard "AT" commands.

The demo application is composed of two sections :

Application Init

Initializes the driver, tests the communication by sending "AT" command, and after that restarts the device.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gsm3_cfg_t gsm3_cfg;  /**< Click config object. */

    /**
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX
     * are defined as HAL_PIN_NC, you will
     * need to define them manually for log to work.
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gsm3_cfg_setup( &gsm3_cfg );
    GSM3_MAP_MIKROBUS( gsm3_cfg, MIKROBUS_1 );
    if ( UART_ERROR == gsm3_init( &gsm3, &gsm3_cfg ) )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    gsm3_process( );
    gsm3_clear_app_buf( );

    // Check communication
    gsm3_send_cmd( &gsm3, GSM3_CMD_AT );
    error_flag = gsm3_rsp_check( GSM3_RSP_OK );
    gsm3_error_check( error_flag );

    // Restart device
    #define RESTART_DEVICE "1,1"
    gsm3_send_cmd_with_par( &gsm3, GSM3_CMD_CFUN, RESTART_DEVICE );
    error_flag = gsm3_rsp_check( GSM3_RSP_OK );
    gsm3_error_check( error_flag );

    log_info( &logger, " Application Task " );
    example_state = GSM3_CONFIGURE_FOR_NETWORK;
}

Application Task

Application task is split in few stages:

  • GSM3_CONFIGURE_FOR_NETWORK: Sets configuration to device to be able to connect to the network.
  • GSM3_WAIT_FOR_CONNECTION: Waits for the network registration indicated via CREG URC event and then checks the connection status.
  • GSM3_CONFIGURE_FOR_EXAMPLE: Sets the device configuration for sending SMS or TCP/UDP messages depending on the selected demo example.
  • GSM3_EXAMPLE: Depending on the selected demo example, it sends an SMS message (in PDU or TXT mode) or TCP/UDP message. By default, the TCP/UDP example is selected.

void application_task ( void ) 
{
    switch ( example_state )
    {
        case GSM3_CONFIGURE_FOR_NETWORK:
        {
            if ( GSM3_OK == gsm3_configure_for_network( ) )
            {
                example_state = GSM3_WAIT_FOR_CONNECTION;
            }
            break;
        }
        case GSM3_WAIT_FOR_CONNECTION:
        {
            if ( GSM3_OK == gsm3_check_connection( ) )
            {
                example_state = GSM3_CONFIGURE_FOR_EXAMPLE;
            }
            break;
        }
        case GSM3_CONFIGURE_FOR_EXAMPLE:
        {
            if ( GSM3_OK == gsm3_configure_for_example( ) )
            {
                example_state = GSM3_EXAMPLE;
            }
            break;
        }
        case GSM3_EXAMPLE:
        {
            gsm3_example( );
            break;
        }
        default:
        {
            log_error( &logger, " Example state." );
            break;
        }
    }
}

Note

In order for the examples to work, user needs to set the APN and SMSC (SMS PDU mode only) of entered SIM card as well as the phone number (SMS mode only) to which he wants to send an SMS. Enter valid values for the following macros: SIM_APN, SIM_SMSC and PHONE_NUMBER_TO_MESSAGE.

Example:

  • SIM_APN "internet"
  • SIM_SMSC "+381610401"
  • PHONE_NUMBER_TO_MESSAGE "+381659999999"

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GSM3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Pressure 14 click

0

Pressure 14 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the ABP2LANT060PG2A3XX, a piezoresistive silicon pressure sensor offering a digital output for reading pressure over the specified full-scale pressure span and a temperature range from Honeywell Sensing and Productivity Solutions. This I2C configurable sensor is calibrated and temperature compensated for sensor offset, sensitivity, temperature effects, and accuracy errors, including non-linearity, repeatability, and hysteresis, using an on-board ASIC. This Click board™ is suitable for pressure measurements in automotive applications, industrial and consumer applications.

[Learn More]

Brushless 17 click

0

Brushless 17 Click is a compact add-on board suitable for controlling brushless DC (BLDC) motors with any MCU. This board features the L6229Q, DMOS fully integrated three-phase BLDC motor driver with overcurrent protection from STMicroelectronics. This motor driver combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip, realized in BCD (Bipolar-CMOS-DMOS) multipower technology. It includes all the circuitry for a three-phase BLDC motor drive, including a three-phase DMOS bridge, a constant off-time PWM current controller, and the decoding logic for single-ended hall sensors that generate the required sequence for the power stage.

[Learn More]

NFC 3 click

0

NFC 3 Click is a compact add-on board that contains an NFC transceiver for contactless communication at 13.56MHz. This board features the PN5180A0HN, a highly integrated high-performance full NFC Forum-compliant frontend from NXP Semiconductors. The PN5180A0HN utilizes an outstanding modulation and demodulation concept for different contactless communication methods and protocols. It is fully compliant with many Reader/Writer standards (ISO 14443A/B, ISO 15693, ISO 18092, and more), alongside support for reading all NFC tag types (type 1, 2, 3, 4A, and 4B). Besides the SPI host interface, it also features high RF output power to drive an antenna etched on the PCB directly, besides its tuning circuit, at high efficiency.

[Learn More]