TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141978 times)
  2. FAT32 Library (75193 times)
  3. Network Ethernet Library (59428 times)
  4. USB Device Library (49438 times)
  5. Network WiFi Library (45229 times)
  6. FT800 Library (44844 times)
  7. GSM click (31400 times)
  8. mikroSDK (30379 times)
  9. microSD click (27741 times)
  10. PID Library (27596 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UART Mux Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: RS232

Downloaded: 393 times

Not followed.

License: MIT license  

The UART Mux Click is a Click board™ that switches the UART pins (RX and TX) from the mikroBUS™ to one of the four available outputs.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UART Mux Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UART Mux Click" changes.

Do you want to report abuse regarding "UART Mux Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UART Mux Click

The UART Mux Click is a Click board™ that switches the UART pins (RX and TX) from the mikroBUS™ to one of the four available outputs.

uartmux_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Apr 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the UartMux Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for UartMux Click driver.

Standard key functions :

  • Config Object Initialization function.

    void uartmux_cfg_setup ( uartmux_cfg_t *cfg );

  • Initialization function.

    UARTMUX_RETVAL uartmux_init ( uartmux_t ctx, uartmux_cfg_t cfg );

Example key functions :

  • Send command.

    void uartmux_send_command ( uartmux_t ctx, char command, uartmux_channel_t *channel );

  • Set INT pin

    void uartmux_set_inhibit_communication ( uartmux_t *ctx, uint8_t state );

  • Choose channel

    void uartmux_choose_channel ( uartmux_t ctx, uartmux_channel_t channel );

Examples Description

This example reads and processes data from UART Mux clicks.

The demo application is composed of two sections :

Application Init

Initializes driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    uartmux_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    uartmux_cfg_setup( &cfg );
    UARTMUX_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    uartmux_init( &uartmux, &cfg );

    uartmux_set_inhibit_communication( &uartmux, UARTMUX_PIN_STATE_LOW );
}

Application Task

Reads the received data.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    uartmux_process( );
#endif

#ifdef DEMO_APP_TRANSMITER
    uartmux_process( );

    channel.state_a = UARTMUX_STATE_A_CHANNEL_1;
    channel.state_b = UARTMUX_STATE_B_CHANNEL_1;

    if ( send_data_cnt == 2 )
    {
        uartmux_send_command( &uartmux, TEXT_TO_SEND, &channel );
        uartmux_process( );
        send_data_cnt = 0;
    }
    else
    {
        send_data_cnt++;
    }
#endif
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.UartMux

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE Cat.1-US click

5

LTE Cat.1-US click is a Click board based on Thales Cinterion ELS61 wireless module that delivers highly efficient Cat 1 LTE connectivity for M2M IoT solutions offering seamless fall back to 2G and 3G networks.

[Learn More]

LTE IoT 8 Click

0

LTE IoT 8 Click is a compact add-on board that contains a low-power solution for LTE and NB-IoT connectivity. This board features the SKY66430-11, a multi-band multi-chip System-in-Package (SiP) supporting 5G Massive IoT (LTE-M/NB-IoT) platforms from Skyworks Solutions and Sequans Communications.

[Learn More]

OLED W Click

0

OLED W Click carries a 96 x 39px white monochrome passive matrix OLED display. The display is bright, has a wide viewing angle and low power consumption.

[Learn More]