TOP Contributors

  1. MIKROE (2662 codes)
  2. Alcides Ramos (357 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137051 times)
  2. FAT32 Library (70177 times)
  3. Network Ethernet Library (56053 times)
  4. USB Device Library (46371 times)
  5. Network WiFi Library (41992 times)
  6. FT800 Library (41324 times)
  7. GSM click (29083 times)
  8. mikroSDK (26522 times)
  9. PID Library (26466 times)
  10. microSD click (25449 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck 5 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 106 times

Not followed.

License: MIT license  

Buck 5 Click is a high-efficiency buck (step-down) DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 click accepts a wide voltage range on its input - from 5V to 30V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck 5 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck 5 click" changes.

Do you want to report abuse regarding "Buck 5 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Buck 5 click

Buck 5 Click is a high-efficiency buck (step-down) DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 click accepts a wide voltage range on its input - from 5V to 30V.

buck5_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : sep 2020.
  • Type : SPI type

Software Support

We provide a library for the Buck5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Buck5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck5_cfg_setup ( buck5_cfg_t *cfg );

  • Initialization function.

    BUCK5_RETVAL buck5_init ( buck5_t ctx, buck5_cfg_t cfg );

Example key functions :

  • This function wake up the chip.

    void buck5_power_on ( buck5_t *ctx );

  • This function reset the chip.

    void buck5_reset ( buck5_t *ctx );

  • Maximum output voltage is 5.5V (255 set value), and minimum output voltage is 1V (0 set value).

    void buck5_set_output_voltage ( buck5_t *ctx, uint8_t voltage );

Examples Description

Buck 5 Click is a high-efficiency buck DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 click accepts a wide voltage range on its input - from 5V to 30V. The output voltage may be adjusted via the SPI interface, in the range from 0.9V to approximately 5.5V.

The demo application is composed of two sections :

Application Init

Initializes driver init, and enables the click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    buck5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck5_cfg_setup( &cfg );
    BUCK5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck5_init( &buck5, &cfg );

    buck5_power_on( &buck5 );
    buck5_reset( &buck5 );
}

Application Task

Increases the output voltage by 500mV every 3 seconds from MIN to MAX VOUT.


void application_task ( void )
{
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_MIN );
    log_printf( &logger, "VOUT: MIN\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_1000mV );
    log_printf( &logger, "VOUT: ~1V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_1500mV );
    log_printf( &logger, "VOUT: ~1.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_2000mV );
    log_printf( &logger, "VOUT: ~2V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_2500mV );
    log_printf( &logger, "VOUT: ~2.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_3000mV );
    log_printf( &logger, "VOUT: ~3V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_3500mV );
    log_printf( &logger, "VOUT: ~3.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_4000mV );
    log_printf( &logger, "VOUT: ~4V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_4500mV );
    log_printf( &logger, "VOUT: ~4.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_5000mV );
    log_printf( &logger, "VOUT: ~5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_MAX );
    log_printf( &logger, "VOUT: MAX\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Buck5

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

mikromedia for PIC18FK - Examples

0

Set of examples for mikromedia for PIC18FK. Provided examples demonstrate working with mikromedia's various features and modules: - Accelerometer - MMC SD card - MP3 - Serial Flash - TFT - Touch Panel - USB UART

[Learn More]

4-20mA T 2 click

0

4-20mA T 2 Click is a compact add-on board for transmitting an analog output current over an industry-standard 4-20mA current loop. This board features DAC161S997, a low-power 16-bit ΣΔ digital-to-analog converter (DAC) from Texas Instruments. It has a programmable Power-Up condition and loop-error detection/reporting accessible via simple 4-wire SPI for data transfer and configuration of the DAC functions. In addition, it is characterized by low power consumption and the possibility of simple Highway Addressable Remote Transducer (HART) modulator interfacing, allowing the injection of FSK-modulated digital data into the 4-20mA current loop.

[Learn More]

DIGI POT 7 click

5

DIGI POT 7 Click is a compact add-on board used as a digitally controlled potentiometer. This board features the AD5175, a single-channel 1024-position digital rheostat with less than ±1% end-to-end resistor tolerance error and 50-time programmable wiper memory from Analog Devices.

[Learn More]