TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136823 times)
  2. FAT32 Library (69986 times)
  3. Network Ethernet Library (55975 times)
  4. USB Device Library (46287 times)
  5. Network WiFi Library (41894 times)
  6. FT800 Library (41203 times)
  7. GSM click (29009 times)
  8. PID Library (26421 times)
  9. mikroSDK (26387 times)
  10. microSD click (25383 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

4-20 mA T click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Current

Downloaded: 160 times

Not followed.

License: MIT license  

This aplication changes the value of the output current

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "4-20 mA T click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "4-20 mA T click" changes.

Do you want to report abuse regarding "4-20 mA T click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


4-20 mA T click

4-20mA T Click is an add-on board in mikroBUS form factor. It’s a compact and easy solution for adding 4-to-20mA industry standard communication protocol to your design

420mat_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the C420mat Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for C420mat Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c420mat_cfg_setup ( c420mat_cfg_t *cfg );

  • Initialization function.

    C420MAT_RETVAL c420mat_init ( c420mat_t ctx, c420mat_cfg_t cfg );

Example key functions :

  • This function sets the output of DAC.

    void c420mat_dac_output ( c420mat_t *ctx, uint16_t value_dac );

  • This function sets the output current to selected value.

    void c420mat_set_i_out ( c420mat_t *ctx, uint8_t i_out );

Examples Description

This aplication changes the value of the output current.

The demo application is composed of two sections :

Application Init

Initializes click SPI driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    c420mat_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c420mat_cfg_setup( &cfg );
    C420MAT_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c420mat_init( &c420mat, &cfg );
}

Application Task

Periodically changes Iout value.


void application_task ( void )
{
   c420mat_set_i_out( &c420mat, 56 );                   // sets Iout to 5.6mA
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   c420mat_set_i_out( &c420mat, 158 );                  // sets Iout to 15.8mA
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.420mat

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Ambient click

5

Ambient click is an ambient light sensor carrying the Melexis MLX75035 IC. This chip consists of a photodiode, a transimpendance amplifier, and an output transistor. It converts the ambient light intensity into a voltage, using the mikroBUS AN pin for communicating with the target board microcontroller.

[Learn More]

LSM303AGR Click

6

LSM303AGR click measures acceleration and magnetic field characteristics. It carries the LSM303AGR 3D accelerometer and 3D magnetometer. LSM303AGR click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over I2C interface.

[Learn More]

Hall Current 8 120A click

0

Hall Current 8 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the TLI4971-A120T5, a high-precision coreless current sensor for industrial/consumer applications from Infineon Technologies. The TLI4971-A120T5 has an analog interface and two fast overcurrent detection outputs, which support the protection of the power circuitry. Galvanic isolation is also provided according to the magnetic sensing principle. Infineon's monolithic Hall technology enables accurate and highly linear measurement of currents with a full scale up to 120A. This Click board™ is suitable for AC/DC current measurement applications: electrical drives, general-purpose inverters, chargers, current monitoring, overload, over-current detection, and many more.

[Learn More]