TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141292 times)
  2. FAT32 Library (74089 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48826 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44074 times)
  7. GSM click (30805 times)
  8. mikroSDK (29659 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

HAPTIC Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 278 times

Not followed.

License: MIT license  

This application generate vibrations from the lower frequency range of the audio input

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "HAPTIC Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "HAPTIC Click" changes.

Do you want to report abuse regarding "HAPTIC Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


HAPTIC Click

< Haptic Click carries DRV2605, a Haptic Driver for ERM and LRA vibration motors (acronyms stand for Eccentric Rotating Mass and Linear Resonant Actuator, respectively) >

haptic_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Haptic Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Haptic Click driver.

Standard key functions :

  • Config Object Initialization function.

    void haptic_cfg_setup ( haptic_cfg_t *cfg );

  • Initialization function.

    HAPTIC_RETVAL haptic_init ( haptic_t ctx, haptic_cfg_t cfg );

Example key functions :

  • Enable the device function.

    void haptic_enable ( haptic_t *ctx );

  • Disable the device function.

    void haptic_disable ( haptic_t *ctx );

  • Sets the Haptic Click to desired mode function.

    void haptic_set_mode ( haptic_t *ctx, uint8_t sel_mode );

Examples Description

This application generate vibrations from the lower frequency range of the audio input.

The demo application is composed of two sections :

Application Init

Configures the Click board in Audio-to-Vibe mode.


void application_init ( void )
{
    log_cfg_t log_cfg;
    haptic_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    haptic_cfg_setup( &cfg );
    HAPTIC_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    haptic_init( &haptic, &cfg );

    log_printf( &logger, " Configuring the Click board...\r\n" );
    log_printf( &logger, "----------------------- \r\n" );

    haptic_enable( &haptic );
    haptic_set_mode( &haptic, HAPTIC_MODE_AUTOCAL );
    haptic_start_motor( &haptic );
    Delay_ms ( 500 );

    haptic_set_mode( &haptic, HAPTIC_MODE_AUDIOVIBE );
    haptic_enable_ac_coulping( &haptic );
    haptic_set_input_to_analog( &haptic );

    log_printf( &logger, " The Click board is configured in Audio-to-Vibe mode...\r\n" );
}

Application Task

An infinite loop.


void application_task ( void )
{
    // Nothing to do here...
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Haptic

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Programmable Relay Timers (AVR)

11

Build your own programmable timer relays using AVR-Ready1, Keypad 4x4 board with EasyPull, RTC, Relay 4 and LCD 2x16 character display with adapter. Just load the demonstration project code and your device is ready to control 4 separate relays.

[Learn More]

Buck 19 Click

0

Buck 19 Click is a compact add-on board that steps down the voltage from its input (supply) to its output (load). This board features the STPD01, a programmable synchronous buck converter from STMicroelectronics, providing power supply in applications following USB power delivery specifications. The STPD01 provides the desired voltage levels required by USB power delivery systems (USB PD 3.0) via I2C serial interface up to 60W output power, more precisely voltages in the range of 3V to 20V with a step of 20mV minimum, and currents from 0.1A to 3A with a minimum in steps of 50mA. It also offers advanced protection features such as overvoltage, overcurrent, and overtemperature detections.

[Learn More]

6DOF IMU 17 Click

0

6DOF IMU 17 Click is a compact add-on board that contains a 6-axis inertial measurement unit. This board features the IIM-42652, a 6-axis SmartIndustrial™ MotionTracking device that supports an extended operating temperature range for industrial applications from TDK InvenSense. It combines a 3-axis gyroscope and a 3-axis accelerometer featuring a 2K-byte FIFO that can lower the traffic on the serial bus interface (SPI or I2C) and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode.

[Learn More]