TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141706 times)
  2. FAT32 Library (74780 times)
  3. Network Ethernet Library (59224 times)
  4. USB Device Library (49227 times)
  5. Network WiFi Library (45000 times)
  6. FT800 Library (44537 times)
  7. GSM click (31203 times)
  8. mikroSDK (30104 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

HAPTIC Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 337 times

Not followed.

License: MIT license  

This application generate vibrations from the lower frequency range of the audio input

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "HAPTIC Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "HAPTIC Click" changes.

Do you want to report abuse regarding "HAPTIC Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


HAPTIC Click

< Haptic Click carries DRV2605, a Haptic Driver for ERM and LRA vibration motors (acronyms stand for Eccentric Rotating Mass and Linear Resonant Actuator, respectively) >

haptic_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Haptic Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Haptic Click driver.

Standard key functions :

  • Config Object Initialization function.

    void haptic_cfg_setup ( haptic_cfg_t *cfg );

  • Initialization function.

    HAPTIC_RETVAL haptic_init ( haptic_t ctx, haptic_cfg_t cfg );

Example key functions :

  • Enable the device function.

    void haptic_enable ( haptic_t *ctx );

  • Disable the device function.

    void haptic_disable ( haptic_t *ctx );

  • Sets the Haptic Click to desired mode function.

    void haptic_set_mode ( haptic_t *ctx, uint8_t sel_mode );

Examples Description

This application generate vibrations from the lower frequency range of the audio input.

The demo application is composed of two sections :

Application Init

Configures the Click board in Audio-to-Vibe mode.


void application_init ( void )
{
    log_cfg_t log_cfg;
    haptic_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    haptic_cfg_setup( &cfg );
    HAPTIC_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    haptic_init( &haptic, &cfg );

    log_printf( &logger, " Configuring the Click board...\r\n" );
    log_printf( &logger, "----------------------- \r\n" );

    haptic_enable( &haptic );
    haptic_set_mode( &haptic, HAPTIC_MODE_AUTOCAL );
    haptic_start_motor( &haptic );
    Delay_ms ( 500 );

    haptic_set_mode( &haptic, HAPTIC_MODE_AUDIOVIBE );
    haptic_enable_ac_coulping( &haptic );
    haptic_set_input_to_analog( &haptic );

    log_printf( &logger, " The Click board is configured in Audio-to-Vibe mode...\r\n" );
}

Application Task

An infinite loop.


void application_task ( void )
{
    // Nothing to do here...
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Haptic

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

I2C to CAN Click

0

I2C to CAN Click is a compact add-on board that contains I2C to CAN-physical transceiver, which extends a single-master I2C bus through harsh or noisy environments. This board features the LT3960, a robust high-speed transceiver that extends a single-master I2C bus up to 400kbps using the CAN-physical layer from Analog Devices. One LT3960 from SCL and SDA I2C lines creates equivalent differential buses (CAN) on two twisted pairs, while the second LT3960 recreates the I2C bus locally for any slave I2C devices on the other end of the twisted pairs. A built-in 3.3V LDO powers both the I2C and CAN lines from a single input supply from 4V to 60V. This Click board™ is suitable for industrial and automotive networking, remote sensor applications, and more.

[Learn More]

TouchPad 2 Click

0

Touchpad 2 Click is a compact add-on board that easily integrates projected capacitive touch into their applications. This board features the IQS525, a projected capacitive touch and proximity trackpad/touchscreen controller from Azoteq. It features best in class sensitivity, signal-to-noise ratio, and automatic tuning of electrodes, in addition to the multi-touch and multi-hover feature. This Click board™ is characterized by embedded gesture engine recognition for simple gestures (tap, swipes, hold), as well as built-in noise detection and filtering. This Click board™ is suitable for human-machine interfaces, keypad or scrolling functions, single-finger gesture-based interfaces, and more.

[Learn More]

Thingstream Click

5

Thingstream Click is a gateway Click board which provides a simple and reliable connection to the Thingstream Cloud platform, a cloud-based rapid prototyping environment, hosted by Thingstream AG.

[Learn More]