TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141698 times)
  2. FAT32 Library (74777 times)
  3. Network Ethernet Library (59218 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27540 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Fan 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 331 times

Not followed.

License: MIT license  

Fan 2 Click carries the MAX31760 precision fan-speed controller. It can measure temperature and adjust the fan speed to keep the temperature at the same level. Fan 2 Click can also control two fans at the same time.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Fan 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Fan 2 Click" changes.

Do you want to report abuse regarding "Fan 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Fan 2 Click

Fan 2 Click carries the MAX31760 precision fan-speed controller. It can measure temperature and adjust the fan speed to keep the temperature at the same level. Fan 2 Click can also control two fans at the same time.

fan2_click.png

Click Product page


Click library

  • Author : Nemanja Medakovic
  • Date : Nov 2019.
  • Type : I2C type

Software Support

We provide a library for the Fan2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Fan2 Click driver.

Standard key functions :

  • Configuration Object Initialization function.

    void fan2_cfg_setup( fan2_cfg_t *cfg );

  • Click Initialization function.

    fan2_err_t fan2_init( fan2_t ctx, fan2_cfg_t cfg );

  • Click Default Configuration function.

    void fan2_default_cfg( fan2_t *ctx, fan2_wire_t n_wires );

Example key functions :

  • Generic Byte Write function.

    fan2_err_t fan2_generic_write_byte( fan2_t *ctx, uint8_t reg_addr, uint8_t data_in );

  • Tachometer Read function.

    fan2_err_t fan2_read_tacho( fan2_t ctx, uint8_t tacho_addr, uint32_t tacho_rpm );

  • Direct Fan Speed Control function.

    fan2_err_t fan2_direct_speed_control( fan2_t *ctx, float speed_per );

Examples Description

This example demonstrates the use of Fan 2 Click board. It demonstrates sensor measurements and fan control.

The demo application is composed of two sections :

Application Init

Initializes I2C driver and executes a default configuration for Fan 2 Click. Also initializes UART logger for results logging.


void application_init( void )
{
    fan2_cfg_t fan2_cfg;
    log_cfg_t log_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.
    fan2_cfg_setup( &fan2_cfg );
    FAN2_MAP_MIKROBUS( fan2_cfg, MIKROBUS_1 );
    fan2_init( &fan2, &fan2_cfg );

    fan2_default_cfg( &fan2 );
    fan2_speed = FAN2_HALF_SPEED_PER;
    Delay_ms ( 1000 );

    log_printf( &logger, "* * *  Fan 2 initialization done  * * *\r\n" );
    log_printf( &logger, "***************************************\r\n" );
    flag = 0;
}

Application Task

Increments the fan speed from half speed to maximum, and on each step measures the current fan speed in RPM and the remote temperature in Celsius. Fan speed will be incremented/decremented each second for 10 percents.


void application_task( void )
{
    fan2_direct_speed_control( &fan2, fan2_speed );

    Delay_ms ( 1000 );
    fan2_read_tacho( &fan2, FAN2_REG_TACH1_CNT, &fan2_curr_speed );

    fan2_read_temp( &fan2, FAN2_REG_REMOTE_TEMP_READ, &fan2_temp );

    log_printf( &logger, "* Fan 2 set speed : %.2f %%\r\n", fan2_speed );
    log_printf( &logger, "* Fan 2 current speed : %u RPM\r\n", fan2_curr_speed );
    log_printf( &logger, "* Fan 2 remote temperature : %.2f %s\r\n", fan2_temp, deg_cels );
    log_printf( &logger, "***************************************\r\n" );

    if ( flag == 0 ) {
        if ( fan2_speed < FAN2_MAX_SPEED_PER)
            fan2_speed += 10;
        else
            flag = 1;
    }

    if ( flag == 1 ) {
        if ( fan2_speed > FAN2_MIN_SPEED_PER)
            fan2_speed -= 10;
        else {
            fan2_speed = FAN2_HALF_SPEED_PER;
            flag = 0;
        }
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Fan2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Accel 5 Click

0

Accel 5 Click features an ultra-low power triaxial accelerometer sensor, labeled as the BMA400. This Click board™ allows linear motion and gravitational force measurements in ranges of ±2 g, ±4 g, ±8, and ±16 g in three perpendicular axes.

[Learn More]

eFuse 2 Click

0

eFuse 2 Click is a compact add-on board that contains an integrated FET hot-swap device. This board features the TPS259631, a highly integrated circuit protection and power management solution from Texas Instruments. It provides multiple protection modes against overloads, short circuits, voltage surges, and excessive inrush current.

[Learn More]

DAC 13 Click

0

DAC 13 Click is a compact add-on board providing a highly accurate digital-to-analog conversion. This board features the AD3541R, a low drift, single channel, 16-bit accuracy, voltage output digital-to-analog converter (DAC) from Analog Devices. The AD3542R operates with a fixed 2.5V reference, communicates with the host MCU through the SPI interface, and can be configurable in multiple voltage span ranges. Also, it provides the possibility to select the power supply of the internal trans-impedance amplifier as well as its gain, which scales the output voltage.

[Learn More]