TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141265 times)
  2. FAT32 Library (74088 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48823 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44072 times)
  7. GSM click (30803 times)
  8. mikroSDK (29654 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 347 times

Not followed.

License: MIT license  

Brushless 7 Click is, as its name said, a motor driver based expansion board for controlling BLCD motors with any microcontroller.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 7 Click" changes.

Do you want to report abuse regarding "Brushless 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Brushless 7 Click

Brushless 7 Click is, as its name said, a motor driver based expansion board for controlling BLCD motors with any microcontroller.

brushless7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jul 2020.
  • Type : I2C type

Software Support

We provide a library for the Brushless7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Brushless7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void brushless7_cfg_setup ( brushless7_cfg_t *cfg );

  • Initialization function.

    BRUSHLESS7_RETVAL brushless7_init ( brushless7_t ctx, brushless7_cfg_t cfg );

  • Click Default Configuration function.

    void brushless7_default_cfg ( brushless7_t *ctx );

Example key functions :

  • Function for changeing duty of device

    uint8_t brushless7_change_duty ( brushless7_t *ctx, float duty_ptc );

  • Function for setting max rpm parameter of device

    uint8_t brushless7_max_speed_rpm ( brushless7_t *ctx, uint8_t max_speed_rpm );

  • Function for setting type of device control

    uint8_t brushless7_control_mode_set ( brushless7_t *ctx, uint8_t ctrl_type );

Examples Description

This example demonstrates the use of Brushless 7 Click board.

The demo application is composed of two sections :

Application Init

Sets the default configuration and then configures the Click board for the selected mode.


void application_init ( void )
{
    log_cfg_t log_cfg;
    brushless7_cfg_t cfg;
    uint8_t error_flag = 0;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    brushless7_cfg_setup( &cfg );
    BRUSHLESS7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    brushless7_init( &brushless7, &cfg );
    Delay_ms ( 100 );

    brushless7_default_cfg( &brushless7 );
    Delay_ms ( 100 );

    demo_type_data = BRUSHLESS7_CTRL_TYPE_DUTY;

    if ( BRUSHLESS7_CTRL_TYPE_DUTY == demo_type_data )
    {
        error_flag |= brushless7_max_duty( &brushless7, 95.0 );
        error_flag |= brushless7_start_duty( &brushless7, 5.0 );
        error_flag |= brushless7_stop_duty( &brushless7, 2.0 );
        log_printf( &logger, " ----- DUTY CONTROL ----- \r\n" );
    }
    else if ( BRUSHLESS7_CTRL_TYPE_RPM == demo_type_data )
    {
        error_flag |= brushless7_max_speed_rpm( &brushless7, BRUSHLESS7_MAX_SPEED_4096 );
        log_printf( &logger, " ----- RPM CONTROL ----- \r\n" );
    }

    if ( BRUSHLESS7_DEV_ERROR == error_flag )
    {
        log_printf( &logger, " ----- ERROR ----- \r\n" );
        for( ; ; );
    }
}

Application Task

Increases and decreases the speed of the motor rotation by setting the duty cycle or rpm values depending on which mode is previously selected. It also switches the direction of rotation at the beginning of each cycle. All data is being logged on the USB UART where you can track their changes.


void application_task ( void )
{
    brushless7_control_mode_set( &brushless7, BRUSHLESS7_CTRL_TYPE_STOP );
    brushless7_toggle_dir_pin_state ( &brushless7 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    brushless7_control_mode_set( &brushless7, demo_type_data );
    if ( BRUSHLESS7_CTRL_TYPE_DUTY == demo_type_data )
    {
        log_printf( &logger, " The motor is accelerating...\r\n" );
        log_printf( &logger, "------------------------------\r\n" );
        brushless7_change_duty( &brushless7, 70.0 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );

        log_printf( &logger, " The motor is slowing down...\r\n" );
        log_printf( &logger, "------------------------------\r\n" );
        brushless7_change_duty( &brushless7, 8.0 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    else if ( BRUSHLESS7_CTRL_TYPE_RPM == demo_type_data )
    {
        log_printf( &logger, " The motor is accelerating...\r\n" );
        log_printf( &logger, "------------------------------\r\n" );
        brushless7_start_rpm( &brushless7, 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );

        log_printf( &logger, " The motor is slowing down...\r\n" );
        log_printf( &logger, "------------------------------\r\n" );
        brushless7_start_rpm( &brushless7, 100 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Motion 3 Click

0

Motion 3 Click is a Click board™ based on EKMC1606112, PIR motion sensor from Panasonic Corporation that's used as human motion detector. Also featured on Motion 3 Click bord is TLP241A photorelay from Toshiba that is used to provide a reinforced galvanic isolation for the external signals used to drive some external high power electronic equipment when motion is detected. It's allowing up to 40V between the SSR contacts in OFF state, and currents up to 2A while in ON state, thanks to a very low ON-state resistance. Motion 3 Click board™ is supported by a mikroSDK compliant library, which includes functions that simplify software development. This Click board™ comes as a fully tested product, ready to be used on a system equipped with the mikroBUS™ socket.

[Learn More]

RS485 Isolator 4 Click

0

RS485 Isolator 4 Click is a compact add-on board designed for robust RS-485 and RS-422 half-duplex communication with galvanic isolation. This board features the ISO1450, a 5kVRMS isolated RS-485 transceiver from Texas Instruments. The ISO1450 supports data rates up to 50Mbps and features advanced protection against electrostatic discharge (ESD) and electrical fast transients (EFT), ensuring reliable long-distance communication in industrial environments. It operates over a wide supply voltage range (3V to 5.5V), offering failsafe protection against open, short, and idle bus states.

[Learn More]

RS232 3 Click

0

RS232 3 Click is a compact add-on board representing a universal usable RS232 transceiver. This board features the SP3221E, a low-power RS232 transceiver from MaxLinear. The SP3221E uses an internal high-efficiency, charge-pump power supply and is compliant with EIA/TIA-232-F standards when powered by any of the mikroBUS™ power rails. The AUTO ON-LINE® feature allows the SP3221E to automatically Wake-Up from a Shutdown state when an RS232 cable is connected and a peripheral device is turned on. When not connected or not in use, the SP3221E will automatically shut down, drawing less supply current.

[Learn More]