TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137096 times)
  2. FAT32 Library (70236 times)
  3. Network Ethernet Library (56122 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42073 times)
  6. FT800 Library (41384 times)
  7. GSM click (29112 times)
  8. mikroSDK (26561 times)
  9. PID Library (26489 times)
  10. microSD click (25486 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Load Cell 5 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Force

Downloaded: 107 times

Not followed.

License: MIT license  

Load Cell 5 Click is a compact add-on board that represents a weigh scale solution. This board features the AD7780, a pin-programmable, low power, 24-bit sigma-delta ΣΔ ADC from Analog Devices. It interfaces directly to the load cell, where the low-level signal from the load cell is amplified by the AD7780’s internal low noise programmable gain amplifier programmed to operate with a gain of 128 or 1. It also has a power-down mode allowing the user to switch off the power to the bridge sensor and power-down the AD7780 when not converting, increasing the product battery life. This Click board™ has many features that make it a perfect solution for safety-critical and weight measurement applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Load Cell 5 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Load Cell 5 click" changes.

Do you want to report abuse regarding "Load Cell 5 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Load Cell 5 click

Load Cell 5 Click is a compact add-on board that represents a weigh scale solution. This board features the AD7780, a pin-programmable, low power, 24-bit sigma-delta ΣΔ ADC from Analog Devices. It interfaces directly to the load cell, where the low-level signal from the load cell is amplified by the AD7780’s internal low noise programmable gain amplifier programmed to operate with a gain of 128 or 1. It also has a power-down mode allowing the user to switch off the power to the bridge sensor and power-down the AD7780 when not converting, increasing the product battery life.

loadcell5_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Jan 2021.
  • Type : SPI type

Software Support

We provide a library for the LoadCell5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for LoadCell5 Click driver.

Standard key functions :

  • loadcell5_cfg_setup Config Object Initialization function.

    void loadcell5_cfg_setup ( loadcell5_cfg_t *cfg );
  • loadcell5_init Initialization function.

    LOADCELL5_RETVAL loadcell5_init ( loadcell5_t *ctx, loadcell5_cfg_t *cfg );
  • loadcell5_default_cfg Click Default Configuration function.

    void loadcell5_default_cfg ( loadcell5_t *ctx );

Example key functions :

  • loadcell5_set_power_mode Load Cell 5 set power mode function.

    err_t loadcell5_set_power_mode ( loadcell5_t *ctx, uint8_t pwr_mode );
  • loadcell5_read_adc Load Cell 5 reading ADC data function.

    uint32_t loadcell5_read_adc ( loadcell5_t *ctx );
  • loadcell5_get_weight Load Cell 5 get weight function.

    float loadcell5_get_weight ( loadcell5_t *ctx, loadcell5_data_t *cell_data );

Example Description

This library contains API for Load Cell 5 Click driver. The library initializes and defines the SPI bus drivers to read status and ADC data. The library also includes a function for tare, calibration and weight measurement.

The demo application is composed of two sections :

Application Init

The initialization of SPI module, log UART, and additional pins and performs the power on. Sets tare the scale, calibrate scale and start measurements.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    loadcell5_cfg_t loadcell5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    loadcell5_cfg_setup( &loadcell5_cfg );
    LOADCELL5_MAP_MIKROBUS( loadcell5_cfg, MIKROBUS_1 );
    err_t init_flag  = loadcell5_init( &loadcell5, &loadcell5_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    loadcell5_default_cfg ( &loadcell5 );
    log_info( &logger, " Application Task " );
    Delay_ms ( 500 ); 

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "     Tare the scale :    \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, " >> Remove all object << \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, " In the following 10 sec \r\n");
    log_printf( &logger, " please remove all object\r\n");
    log_printf( &logger, "     from the scale.     \r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "    Start tare scales    \r\n");
    loadcell5_tare ( &loadcell5, &cell_data );
    Delay_ms ( 500 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "   Tarring is complete   \r\n");
    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "    Calibrate Scale :    \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, "   >>> Load etalon <<<   \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, " In the following 10 sec \r\n");
    log_printf( &logger, "place 100g weight etalon\r\n");
    log_printf( &logger, "    on the scale for     \r\n");
    log_printf( &logger, "   calibration purpose.  \r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "    Start calibration    \r\n");

    if ( loadcell5_calibration ( &loadcell5, LOADCELL5_WEIGHT_100G, &cell_data ) == LOADCELL5_OK ) {
        log_printf( &logger, "-------------------------\r\n");
        log_printf( &logger, "    Calibration  Done    \r\n");

        log_printf( &logger, "- - - - - - - - - - - - -\r\n");
        log_printf( &logger, "  >>> Remove etalon <<<  \r\n");
        log_printf( &logger, "- - - - - - - - - - - - -\r\n");
        log_printf( &logger, " In the following 10 sec \r\n");
        log_printf( &logger, "   remove 100g weight   \r\n");
        log_printf( &logger, "   etalon on the scale.  \r\n");
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    else {
        log_printf( &logger, "-------------------------\r\n");
        log_printf( &logger, "   Calibration  Error   \r\n");
        for ( ; ; );
    }

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "   Start measurements :  \r\n");
    log_printf( &logger, "-------------------------\r\n");
}

Application Task

This is an example that demonstrates the use of the Load Cell 5 click board. The Load Cell 5 click board can be used to measure weight, shows the measurement of scales in grams [ g ]. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void ) {   
    weight_val = loadcell5_get_weight( &loadcell5, &cell_data );

    log_printf(&logger, "   Weight : %.2f g\r\n", weight_val );

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LoadCell5

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Environment 3 click

0

Environment 3 Click is a compact add-on board that contains a four-in-one environmental measurement solution. This board features BME688, a first gas sensor with Artificial Intelligence (AI), and integrated high-linearity/high-accuracy pressure, humidity, and temperature sensors from Bosch Sensortech. The BME688 can detect Volatile Organic Compounds (VOCs), Volatile Sulfur Compounds (VSCs), and other gases such as carbon monoxide and hydrogen in part per billion (ppb) range. It provides absolute temperature accuracy, typical of ±1°C, and best performance when operated within the pressure, temperature, and humidity range of 300-110hPa, 0-65°C, and 10-90%RH.

[Learn More]

Accel 8 click

0

Accel 8 Click is an advanced 6-axis motion tracking Click board™, which utilizes the MPU6050, a very popular motion sensor IC, equipped with a 3-axis gyroscope and 3-axis accelerometer.

[Learn More]

3D Hall click

1

3D Hall click carries the MLX90333 Triaxisâ„¢ Hall sensor, capable of detecting the position of any magnet in nearby space. It does so by being sensitive to three components of flux density (BX, BY, BZ). The board communicates with the target MCU through the mikroBUS SPI interface. 3D Hall click is designed to use a 5V power supply only.

[Learn More]