TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141292 times)
  2. FAT32 Library (74089 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48826 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44074 times)
  7. GSM click (30805 times)
  8. mikroSDK (29659 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MRAM 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: MRAM

Downloaded: 296 times

Not followed.

License: MIT license  

MRAM 2 Click is a compact add-on board for applications that must store and retrieve data and programs quickly using a small number of pins.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MRAM 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MRAM 2 Click" changes.

Do you want to report abuse regarding "MRAM 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MRAM 2 Click

MRAM 2 Click is a compact add-on board for applications that must store and retrieve data and programs quickly using a small number of pins.

mram2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : SPI type

Software Support

We provide a library for the Mram2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mram2 Click driver.

Standard key functions :

  • mram2_cfg_setup Config Object Initialization function.

    void mram2_cfg_setup ( mram2_cfg_t *cfg ); 
  • mram2_init Initialization function.

    err_t mram2_init ( mram2_t *ctx, mram2_cfg_t *cfg );

Example key functions :

  • mram2_wren Write Enable function

    void mram2_wren ( mram2_t *ctx );
  • mram2_read Read Data Bytes function

    void mram2_read ( mram2_t *ctx, uint32_t mem_adr, uint8_t *rd_data, uint8_t n_bytes );
  • mram2_write Write Data Bytes function

    void mram2_write ( mram2_t *ctx, uint32_t mem_adr, uint8_t *wr_data, uint8_t n_bytes );

Examples Description

This example demonstrates the use of MRAM 2 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver, sets the write protect and disables the hold signal.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mram2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mram2_cfg_setup( &cfg );
    MRAM2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mram2_init( &mram2, &cfg );

    log_printf( &logger, "------------------- \r\n" );
    log_printf( &logger, "   MRAM 2 Click     \r\n" );
    log_printf( &logger, "------------------- \r\n" );
    mram2_write_protect( &mram2, MRAM2_WP_ENABLE );
    mram2_hold( &mram2, MRAM2_HLD_DISABLE );
    log_printf( &logger, "   Initialized      \r\n" );
    log_printf( &logger, "------------------- \r\n" );
    Delay_ms ( 100 );
}

Application Task

Writes "MikroE" into the first 6 memory locations, and then reads it back and displays it to the USB UART approximately every 5 seconds.


void application_task ( void )
{
    mram2_wren( &mram2 );
    log_printf( &logger, "Write enabled!\r\n" );
    Delay_ms ( 100 );
    log_printf( &logger, "Writing \"%s\" to memory...\r\n", val_in );
    mram2_write( &mram2, 0x000000, &val_in[ 0 ], 6 );
    Delay_ms ( 100 );
    mram2_wrdi ( &mram2 );
    log_printf( &logger, "Write disabled!\r\n" );
    Delay_ms ( 100 );
    mram2_read ( &mram2, 0x000000, &val_out[ 0 ], 6 );
    log_printf( &logger, "Read data : %s\r\n", val_out );

    log_printf( &logger, "-------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mram2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Matrix R Click

0

Matrix R Click is a mikroBUS add-on board with two red 5x7 matrices driven by two MAX7219 8-bit LED Display Drivers. The active area of each matrix is 7.62mm high and 5.08 mm wide. 7x5 is a standard resolution for displaying ASCII characters, so the Click is essentially a dual-character display capable of showing letters in more readable typefaces compared to a 14-segment display. The Click communicates with the target MCU through the mikroBUS:tm: SPI interface with two separate Chip Select lines for each matrix (CSL for the left, CSR for the right). This board is designed to use a 5V power supply.

[Learn More]

mikromedia for PIC18FK - Examples

0

Set of examples for mikromedia for PIC18FK. Provided examples demonstrate working with mikromedia's various features and modules: - Accelerometer - MMC SD card - MP3 - Serial Flash - TFT - Touch Panel - USB UART

[Learn More]

GSM Booster Board Example

0

This is a sample program which demonstrates the usage of GSM Booster Board, a replacement board for Telit GM862 module used on various MikroElektronika development systems. This example covers PICPLC4 v6 and PICPLC16 v6 development systems, it receives the SMS message in specific format and toggles the relay specified in the message.

[Learn More]