TOP Contributors

  1. MIKROE (2662 codes)
  2. Alcides Ramos (357 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137023 times)
  2. FAT32 Library (70145 times)
  3. Network Ethernet Library (56030 times)
  4. USB Device Library (46353 times)
  5. Network WiFi Library (41968 times)
  6. FT800 Library (41297 times)
  7. GSM click (29065 times)
  8. mikroSDK (26502 times)
  9. PID Library (26452 times)
  10. microSD click (25426 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MRAM 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: MRAM

Downloaded: 72 times

Not followed.

License: MIT license  

MRAM 2 Click is a compact add-on board for applications that must store and retrieve data and programs quickly using a small number of pins.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MRAM 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MRAM 2 click" changes.

Do you want to report abuse regarding "MRAM 2 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MRAM 2 click

MRAM 2 Click is a compact add-on board for applications that must store and retrieve data and programs quickly using a small number of pins.

mram2_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : SPI type

Software Support

We provide a library for the Mram2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mram2 Click driver.

Standard key functions :

  • mram2_cfg_setup Config Object Initialization function.

    void mram2_cfg_setup ( mram2_cfg_t *cfg ); 
  • mram2_init Initialization function.

    err_t mram2_init ( mram2_t *ctx, mram2_cfg_t *cfg );

Example key functions :

  • mram2_wren Write Enable function

    void mram2_wren ( mram2_t *ctx );
  • mram2_read Read Data Bytes function

    void mram2_read ( mram2_t *ctx, uint32_t mem_adr, uint8_t *rd_data, uint8_t n_bytes );
  • mram2_write Write Data Bytes function

    void mram2_write ( mram2_t *ctx, uint32_t mem_adr, uint8_t *wr_data, uint8_t n_bytes );

Examples Description

This example demonstrates the use of MRAM 2 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver, sets the write protect and disables the hold signal.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mram2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mram2_cfg_setup( &cfg );
    MRAM2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mram2_init( &mram2, &cfg );

    log_printf( &logger, "------------------- \r\n" );
    log_printf( &logger, "   MRAM 2 Click     \r\n" );
    log_printf( &logger, "------------------- \r\n" );
    mram2_write_protect( &mram2, MRAM2_WP_ENABLE );
    mram2_hold( &mram2, MRAM2_HLD_DISABLE );
    log_printf( &logger, "   Initialized      \r\n" );
    log_printf( &logger, "------------------- \r\n" );
    Delay_ms ( 100 );
}

Application Task

Writes "MikroE" into the first 6 memory locations, and then reads it back and displays it to the USB UART approximately every 5 seconds.


void application_task ( void )
{
    mram2_wren( &mram2 );
    log_printf( &logger, "Write enabled!\r\n" );
    Delay_ms ( 100 );
    log_printf( &logger, "Writing \"%s\" to memory...\r\n", val_in );
    mram2_write( &mram2, 0x000000, &val_in[ 0 ], 6 );
    Delay_ms ( 100 );
    mram2_wrdi ( &mram2 );
    log_printf( &logger, "Write disabled!\r\n" );
    Delay_ms ( 100 );
    mram2_read ( &mram2, 0x000000, &val_out[ 0 ], 6 );
    log_printf( &logger, "Read data : %s\r\n", val_out );

    log_printf( &logger, "-------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mram2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ADC 4 click

0

ADC 4 click is an advanced analog to digital multichannel converter, which can sample inputs from 16 single-ended channels or 8 differential input channel pairs.

[Learn More]

Qi Receiver click

0

Qi Receiver click is based on the P9025AC 5W Qi wireless power receiver integrated circuit, with the advanced Foreign Object Detection (FOD) feature, from IDT. The click utilizes the principles of the inductive coupling for the purpose of wireless power transfer.

[Learn More]

DIGI POT click

0

This program demonstrates the usage of single channel Digital Potentiometer (MCP4161) with 8 bit resolution. Voltage derived from PW pin is read by MCU's ADC. Scaled value is then displayed at PORTD LEDs. User can increase or decrease resitance by pressing buttons RB2 and RB3.&amp;lt;br/&amp;gt;

[Learn More]