TOP Contributors

  1. MIKROE (2653 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136723 times)
  2. FAT32 Library (69934 times)
  3. Network Ethernet Library (55939 times)
  4. USB Device Library (46265 times)
  5. Network WiFi Library (41886 times)
  6. FT800 Library (41169 times)
  7. GSM click (28979 times)
  8. PID Library (26412 times)
  9. mikroSDK (26357 times)
  10. microSD click (25357 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RTC 9 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: RTC

Downloaded: 90 times

Not followed.

License: MIT license  

RTC 9 Click is a real-time clock module that has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time. This board features the M41T82, real-time clock (RTC) with battery switchover, from ST Microelectronics.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RTC 9 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RTC 9 click" changes.

Do you want to report abuse regarding "RTC 9 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


RTC 9 click

RTC 9 Click is a real-time clock module that has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time. This board features the M41T82, real-time clock (RTC) with battery switchover, from ST Microelectronics.

rtc9_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Jul 2020.
  • Type : I2C type

Software Support

We provide a library for the Rtc9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Rtc9 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void rtc9_cfg_setup ( rtc9_cfg_t *cfg );

  • Initialization function.

    RTC9_RETVAL rtc9_init ( rtc9_t ctx, rtc9_cfg_t cfg );

Example key functions :

  • Set new time - 24 hour format

    void rtc9_set_time( rtc9_t *ctx, uint8_t hour, uint8_t min, uint8_t sec );

  • Get new time - 24 hour format

    rtc9_get_time( rtc9_t ctx, rtc9_get_time_t get_time );

  • Get new date

    rtc9_get_date( rtc9_t ctx, rtc9_get_date_t get_data );

Examples Description

This example demonstrates the use of RTC 9 click board.

The demo application is composed of two sections :

Application Init

Initializes the driver, wakes up the module, and sets the time and date.


void application_init ( void )
{
    log_cfg_t log_cfg;
    rtc9_cfg_t cfg;
    rtc9_set_data_t set_data;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    rtc9_cfg_setup( &cfg );
    RTC9_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    rtc9_init( &rtc9, &cfg );

    Delay_ms ( 500 );

    rtc9_wakeup( &rtc9 );

    rtc9_set_time( &rtc9, 23, 59, 50 );

    set_data.day = 22;
    set_data.day_of_week = RTC9_DAY_MONDAY;
    set_data.month = RTC9_MONTH_MARCH;
    set_data.year = 21;
    rtc9_set_date ( &rtc9, &set_data );

    rtc9_wakeup( &rtc9 );
}

Application Task

Reads the current time and date and displays the results on the USB UART each second.


void application_task ( void )
{
    rtc9_get_time_t get_time;
    rtc9_get_date_t get_date;

    char *week_string;
    char *month_string;

    rtc9_get_time( &rtc9, &get_time );
    rtc9_get_date( &rtc9, &get_date );

    if ( get_time.sec != seconds_old )
    {
        seconds_old = get_time.sec;
        log_printf( &logger, "- Time [ %.2u:%.2u:%.2u ] \r\n", ( uint16_t ) get_time.hour, 
                                                               ( uint16_t ) get_time.min, 
                                                               ( uint16_t ) get_time.sec );

        week_string = rtc9_current_day_of_week( get_date.day_of_week );
        month_string = rtc9_current_month( get_date.month );

        log_printf( &logger, "- Date [ %s, %s %.2u, %u ] \r\n", week_string, month_string, 
                                                               ( uint16_t ) get_date.day, 
                                                               ( uint16_t ) get_date.year + 2000 );
        log_printf( &logger, "---------------------------------------- \r\n" );
    }
    Delay_ms ( 10 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Rtc9

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DMA Memory to Memory Demo

0

The application demonstrates DMA SDK functionality.

[Learn More]

RS485 3 click

5

RS485 3 click uses SN65HVD31DR from Texas Instruments, a tri-state differential line driver and differential input line receiver. The click is intended to be used as UART to RS422/RS485 communication interface. It is suited for transmitting smaller blocks of data over long distances, using the four-wire bus, allowing for full-duplex communication.

[Learn More]

LED Driver 4 click

0

LED Driver 4 click is a form of a high-efficiency boost converter that is ideally suited for driving an array of white LEDs. The driver has the ability to dim the connected LED array, without producing any noise on the output. The Click board is capable of driving a LED array with up to 26V, providing a constant current to the LED segments.

[Learn More]