TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141695 times)
  2. FAT32 Library (74760 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44528 times)
  7. GSM click (31196 times)
  8. mikroSDK (30100 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

3 x Buck Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 265 times

Not followed.

License: MIT license  

3xBuck Click is a triple step-down (buck) converter Click board. It features three independent output terminals that can provide 1.8V, 3.3V, and 5V with the combined current output up to 3A.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "3 x Buck Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "3 x Buck Click" changes.

Do you want to report abuse regarding "3 x Buck Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


3 x Buck Click

3xBuck Click is a triple step-down (buck) converter Click board™. It features three independent output terminals that can provide 1.8V, 3.3V, and 5V with the combined current output up to 3A.

3xbuck_click.png

Click Product page


Click library

  • Author : Petar Suknjaja
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the 3xBuck Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for 3xBuck Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c3xbuck_cfg_setup ( c3xbuck_cfg_t *cfg );

  • Initialization function.

    C3XBUCK_RETVAL c3xbuck_init ( c3xbuck_t ctx, c3xbuck_cfg_t cfg );

  • Click Default Configuration function.

    void c3xbuck_default_cfg ( c3xbuck_t *ctx );

Example key functions :

  • This function enables desired Buck on the Click.

    void c3xbuck_enable_buck ( c3xbuck_t *ctx, uint8_t buck );

  • This function disables desired Buck on the Click.

    void c3xbuck_disable_buck ( c3xbuck_t *ctx, uint8_t buck );

  • This function sets voltage on desired Buck.

    void c3xbuck_set_voltage ( c3xbuck_t *ctx, uint8_t buck, uint8_t voltage );

Examples Description

This example demonstrates the use of the 3 x Buck Click Board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    c3xbuck_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c3xbuck_cfg_setup( &cfg );
    C3XBUCK_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c3xbuck_init( &c3xbuck, &cfg );
    Delay_ms ( 100 );

    c3xbuck_default_cfg ( &c3xbuck );
    log_info( &logger, "---- Application Task ----" );
}

Application Task

Alternates between predefined and default values for the Bucks output and logs the current set values on the USB UART.


void application_task ( void )
{
    //  Task implementation.
    log_printf( &logger, "Setting predefined values : \r\n" );
    log_printf( &logger, "Buck 1 : 1000 mV\r\n");
    log_printf( &logger, "Buck 2 : 1250 mV\r\n");
    log_printf( &logger, "Buck 3 : 1500 mV\r\n");

    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_1, C3XBUCK_OUTPUT_VOLTAGE_1000mV );
    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_2, C3XBUCK_OUTPUT_VOLTAGE_1250mV );
    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_3, C3XBUCK_OUTPUT_VOLTAGE_1500mV );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "Setting default values: \r\n");
    log_printf( &logger, "Buck 1 : 1800 mV\r\n");
    log_printf( &logger, "Buck 2 : 3300 mV\r\n");
    log_printf( &logger, "Buck 3 : 5000 mV\r\n");

    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_1, C3XBUCK_BUCK_DEFAULT_OUTPUT_VOLTAGE );
    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_2, C3XBUCK_BUCK_DEFAULT_OUTPUT_VOLTAGE );
    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_3, C3XBUCK_BUCK_DEFAULT_OUTPUT_VOLTAGE );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

The default output voltage on Buck 1 is 1800mV, Buck 2 is 3300mV, and Buck 3 is 5000mV. Configurable output voltage on all Bucks ranges from 680mV to 1950mV.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.3xBuck

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Spectral 3 click

5

Spectral 3 click is a multispectral sensing device, which uses the state-of-the-art sensor IC for a very accurate near-IR (NIR) sensing. The sensor on the Spectral 3 click provides multi-spectral sensing in the NIR wavelengths from approximately 610nm to 860nm with the full width at half maximum (FWHM) of 20nm.

[Learn More]

UPS Click

5

UPS click is a supercapacitor charger click that provides continuous power for a load connected to the output terminals, even after the power supply is removed.

[Learn More]

LTE Cat.1 3 AUX Click

0

LTE Cat.1 3 Click (for Australia) is a compact add-on board for reliable 4G wireless communication. This board features the EG91AUXGA-128-SGNS, an LTE Cat 1 IoT module that meets the 3GPP Release 11 standard from Quectel. It supports multiple wireless standards, including LTE-FDD, WCDMA, and GSM, ensuring broad network compatibility. Key features include multi-band LTE support (B1/B2/B3/B4/B5/B7/B8/B28/B66), RX diversity for bands B1, B2, B5, and B8, and multi-constellation GNSS (GPS, GLONASS, BeiDou/Compass, Galileo, QZSS). It also integrates a 16-bit mono audio codec for voice functionality with support for CTIA standard headphones.

[Learn More]