TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141361 times)
  2. FAT32 Library (74205 times)
  3. Network Ethernet Library (58777 times)
  4. USB Device Library (48854 times)
  5. Network WiFi Library (44564 times)
  6. FT800 Library (44149 times)
  7. GSM click (30883 times)
  8. mikroSDK (29739 times)
  9. PID Library (27372 times)
  10. microSD click (27309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

4Dot-Matrix R Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: LED matrix

Downloaded: 283 times

Not followed.

License: MIT license  

4Dot-Matrix R Click is a display device Click board™, which contains a four-digit dot matrix display module, labeled as SLO2016.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "4Dot-Matrix R Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "4Dot-Matrix R Click" changes.

Do you want to report abuse regarding "4Dot-Matrix R Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


4Dot-Matrix R Click

4Dot-Matrix R Click is a display device Click board™, which contains a four-digit dot matrix display module, labeled as SLO2016.

4dotmatrixr_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : I2C type

Software Support

We provide a library for the c4dotmatrixr Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for c4dotmatrixr Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c4dotmatrixr_cfg_setup ( c4dotmatrixr_cfg_t *cfg );

  • Initialization function.

    C4DOTMATRIXR_RETVAL c4dotmatrixr_init ( c4dotmatrixr_t ctx, c4dotmatrixr_cfg_t cfg );

  • Click Default Configuration function.

    void c4dotmatrixr_default_cfg ( c4dotmatrixr_t *ctx );

Example key functions :

  • 4DotMatrix Char Write.

    void c4dot_write_char ( c4dotmatrixr_t *ctx, uint8_t char_num, uint8_t char_value );

  • 4DotMatrix Char 0 Write.

    void c4dot_write_char0 ( c4dotmatrixr_t *ctx, uint8_t char_value );

  • 4DotMatrix Text Write.

    void c4dot_write_text ( c4dotmatrixr_t ctx, uint8_t text_to_write );

Examples Description

This example demonstrates the use of 4Dot-Matrix R Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    c4dotmatrixr_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c4dotmatrixr_cfg_setup( &cfg );
    C4DOTMATRIXR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c4dotmatrixr_init( &c4dotmatrixr, &cfg );

    c4dotmatrixr_default_cfg ( &c4dotmatrixr );
    log_info( &logger, "---- Application Task ----" );
}

Application Task

Displays a desired text message and then numbers from -20 to 20 on the Click board. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    int8_t i;
    log_printf( &logger, "------------------------------------\r\n" );
    log_printf( &logger, "Displaying \"Mikroelektronika\" on the Click board...\r\n" );
    for ( i = 0; i < 20; i++ )
    {
        c4dot_write_text(  &c4dotmatrixr, text + i );
        Delay_ms ( 150 );
    }

    // Clear and delay.
    c4dot_clear_display( &c4dotmatrixr );
    Delay_ms ( 500 );

    log_printf( &logger, "Displaying all integer numbers from -20 to 20 on the Click board...\r\n" );
    // Write some numbers on the display.
    for ( i = -20; i <= 20; i++ )
    {
        c4dot_write_int_dec( &c4dotmatrixr, i );
        Delay_ms ( 150 );
    }

    // Clear and delay.
    c4dot_clear_display( &c4dotmatrixr );
    Delay_ms ( 500 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.4dotmatrixr

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LightRanger 9 Click

0

LightRanger 9 Click is a compact add-on board suitable for range-finding and distance sensing applications. This board features the TMF8828, a dToF (direct time of flight) optical distance sensor with an integrated Vertical Cavity Surface Emitting Laser (VCSEL) achieving up to 5m target detection distance from ams AG. Due to its lens on the SPAD, it supports 3x3, 4x4, 3x6, and 8x8 multizone output data and a wide, dynamically adjustable field of view. All raw data processing is performed inside the TMF8828, providing distance information and confidence values through its I2C interface. A unique addition to this Click board™ represents an additional 0.7mm thick protective lens that further reduces interference and improves the sensor's accuracy.

[Learn More]

Mikromedia 5 for STM32F4 Capacitive FPI

0

This project contains example for testing modules on Mikromedia 5 for STM32F4 Capacitive FPI

[Learn More]

Accel 4 Click

0

Accel 4 Click is a compact add-on board that contains an acceleration sensor. This board features the FXLS8964AF, a 12-bit three-axis accelerometer from NXP Semiconductors. It allows selectable full-scale acceleration measurements in ranges of �2g, �4g, �8g, or �16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. The FXLS8964AF supports both high-performance and low-power operating modes, allowing maximum flexibility to meet the resolution and power needs for various unique use cases.

[Learn More]