TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141228 times)
  2. FAT32 Library (74037 times)
  3. Network Ethernet Library (58659 times)
  4. USB Device Library (48766 times)
  5. Network WiFi Library (44485 times)
  6. FT800 Library (44034 times)
  7. GSM click (30784 times)
  8. mikroSDK (29601 times)
  9. PID Library (27342 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UART I2C/SPI Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: RS232

Downloaded: 502 times

Not followed.

License: MIT license  

UART I2C/SPI Click is an all-in-one solution which allows ESD-protected RS-232 connectivity to any embedded application while bridging the UART and I2C/SPI interfaces at the same time. It is equipped with the DE-9 connector, so it can be easily connected.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UART I2C/SPI Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UART I2C/SPI Click" changes.

Do you want to report abuse regarding "UART I2C/SPI Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UART I2C/SPI Click

UART I2C/SPI Click is an all-in-one solution which allows ESD-protected RS-232 connectivity to any embedded application while bridging the UART and I2C/SPI interfaces at the same time. It is equipped with the DE-9 connector, so it can be easily connected.

uarti2cspi_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the UARTI2CSPI Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for UARTI2CSPI Click driver.

Standard key functions :

  • Config Object Initialization function.

    void uarti2cspi_cfg_setup ( uarti2cspi_cfg_t *cfg );

  • Initialization function.

    UARTI2CSPI_RETVAL uarti2cspi_init ( uarti2cspi_t ctx, uarti2cspi_cfg_t cfg );

  • Set RST pin state function.

    void uarti2cspi_set_reset ( uarti2cspi_t *ctx, uint8_t state );

Example key functions :

  • Advanced initialization function.

    void uarti2cspi_advanced_init ( uarti2cspi_t *ctx, uint32_t baud_rate, uint8_t data_bits, uint8_t parity_mode, uint8_t stop_bits );

  • Uart write text function.

    void uarti2cspi_uart_write_text ( uarti2cspi_t ctx, uint8_t w_text );

  • This function reads one byte from the Click module.

    uint8_t uarti2cspi_uart_read ( uarti2cspi_t *ctx );

Examples Description

This example showcases how to initialize, configure and use the UART I2C/SPI Click module. The Click is a I2C/SPI to UART bridge interface. It requires a RS232/485 cable in order to be connected to other Click module or an adapter.

The demo application is composed of two sections :

Application Init

Initializes the driver, configures UART, and enables UART interrupts.


void application_init ( void )
{
    log_cfg_t log_cfg;
    uarti2cspi_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    uarti2cspi_cfg_setup( &cfg );
    UARTI2CSPI_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    uarti2cspi_init( &uarti2cspi, &cfg );
    Delay_ms ( 1000 );

    uarti2cspi_advanced_init( &uarti2cspi, 115200, UARTI2CSPI_UART_8_BIT_DATA, 
                                                   UARTI2CSPI_UART_NOPARITY,
                                                   UARTI2CSPI_UART_ONE_STOPBIT );
    Delay_ms ( 100 );
    uarti2cspi_interrupt_enable( &uarti2cspi, UARTI2CSPI_RXD_INT_EN | UARTI2CSPI_THR_EMPTY_INT_EN );

    Delay_ms ( 100 );

#ifdef DEMO_APP_TRANSMITTER
    log_info( &logger, "---- TRANSMITTER MODE ----" );
#endif
#ifdef DEMO_APP_RECEIVER
    log_info( &logger, "---- RECEIVER MODE ----" );
#endif
    Delay_ms ( 1000 );
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 2 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_TRANSMITTER
    uarti2cspi_uart_write_text( &uarti2cspi, TEXT_TO_SEND );
    log_info( &logger, "---- The message has been sent ----" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif
#ifdef DEMO_APP_RECEIVER
    if ( uarti2cspi_uart_data_ready( &uarti2cspi ) )
    {
        uint8_t rx_data = uarti2cspi_uart_read( &uarti2cspi );
        log_printf( &logger, "%c", rx_data );
    }
#endif
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.UARTI2CSPI

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ISO 9141 click

5

ISO 9141 Click is a compact add-on board that contains a monolithic bus driver with ISO 9141 interface. This board features the L9637, a monolithic integrated circuit containing standard ISO 9141 compatible interface functions from ST Microelectronics.

[Learn More]

RS485 Isolator 2 click

5

RS485 Isolator 2 Click features ADM2867E a 5.7 kV rms signal and power isolated full duplex RS-485 transceiver. The device also features cable invert pins, allowing the user to quickly correct reversed cable connection on A, B, Y, and Z bus pins while maintaining receiver full receiver fail-safe performance.

[Learn More]

Pressure 20 Click

0

Pressure 20 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the ICP-20100, a high-accuracy digital barometric pressure and temperature sensor from TDK InvenSense. The ICP-20100 is based on MEMS capacitive technology with ultra-low noise, low power consumption, and temperature stability alongside programmable output: all-pressure, all-temperature, or pressure and temperature output. It converts output data into a 20-bit digital value and sends the information via a configurable host interface that supports SPI and I2C serial communications. It measures pressure from 30kPa up to 110kPa with an accuracy of ±20Pa over a wide operating temperature range.

[Learn More]