TOP Contributors

  1. MIKROE (2658 codes)
  2. Alcides Ramos (355 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136916 times)
  2. FAT32 Library (70040 times)
  3. Network Ethernet Library (56007 times)
  4. USB Device Library (46310 times)
  5. Network WiFi Library (41935 times)
  6. FT800 Library (41240 times)
  7. GSM click (29026 times)
  8. PID Library (26435 times)
  9. mikroSDK (26408 times)
  10. microSD click (25389 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LR 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: LoRa

Downloaded: 96 times

Not followed.

License: MIT license  

LR 3 Click is a compact add-on board that contains a long-range transceiver. This board features the 32001345, RF technology-based SRD transceiver, which operates at a frequency of 868MHz from Mipot.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LR 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LR 3 click" changes.

Do you want to report abuse regarding "LR 3 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LR 3 click

LR 3 Click is a compact add-on board that contains a long-range transceiver. This board features the 32001345, RF technology-based SRD transceiver, which operates at a frequency of 868MHz from Mipot.

lr3_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : jun 2020.
  • Type : UART type

Software Support

We provide a library for the LR3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LR3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void lr3_cfg_setup ( lr3_cfg_t *cfg );

  • Initialization function.

    LR3_RETVAL lr3_init ( lr3_t ctx, lr3_cfg_t cfg );

Example key functions :

  • Function performs the recovery of EEPROM default values.

    LR3_RETVAL lr3_factory_reset ( lr3_t *ctx );

  • Function writes data to EEPROM.

    LR3_RETVAL lr3_write_eeprom ( lr3_t ctx, uint8_t address, uint8_t n_bytes, uint8_t data_in );

  • Function performs the transmission of radio frames.

    LR3_RETVAL lr3_tx_message ( lr3_t ctx, lr3_tx_msg_t tx_msg );

Examples Description

This example reads and processes data from LR 3 clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver, enables the click board and configures it for the selected mode.


void application_init ( void )
{
    log_cfg_t log_cfg;
    lr3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    lr3_cfg_setup( &cfg );
    LR3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lr3_init( &lr3, &cfg );

    Delay_ms ( 100 );
    lr3_set_ind_handler( &lr3, indication_handler );
    lr3_hard_reset( &lr3 );
    lr3_factory_reset( &lr3 );
    Delay_ms ( 1000 );

#ifdef MASTER
    // Set device as MASTER
    tmp_msg.payload[ 0 ] = 0;

    if( lr3_write_eeprom( &lr3, 0x00, 1, &tmp_msg.payload[ 0 ] ) )
    {
        log_error( &logger, "Setting device as MASTER!\r\n" );
        for( ; ; );
    }

    log_printf( &logger, "Device configured as MASTER!\r\n" );
    Delay_ms ( 1000 );

    // Delete all network table
    if( lr3_delete_all_network_table( &lr3 ) )
    {
        log_error( &logger, "Deleting all paired devices!\r\n" );
        for( ; ; );
    }
    log_printf( &logger, "All paired devices deleted!\r\n" );
    Delay_ms ( 1000 );

    // Enable pairing
    if( lr3_enable_pairing( &lr3, 1 ) )
    {
        log_error( &logger, "Pairing not enabled!\r\n" );
        for( ; ; );
    }
    log_printf( &logger, "Pairing enabled!\r\n" );
    Delay_ms ( 1000 );
#endif

#ifdef END_NODE
    // Set device as END_NODE
    tmp_msg.payload[ 0 ] = 1;

    if( lr3_write_eeprom( &lr3, 0x00, 1, &tmp_msg.payload[ 0 ] ) )
    {
        log_error( &logger, "Setting device as END_NODE!\r\n" );
        for( ; ; );
    }

    log_printf( &logger, "Device configured as END_NODE!\r\n" );
    Delay_ms ( 1000 );

    // Send pairing request and displays MASTER ID
    uint8_t master_id[ 4 ] = { 0 };
    do
    {
        lr3_get_pairing_request( &lr3 );
        Delay_ms ( 1000 );
    }
    while ( lr3_get_activation_status( &lr3, master_id ) != 1 );
    log_printf( &logger, "Paired to a network!\r\n" );
    log_printf( &logger, "Master ID: 0x%.2X%.2X%.2X%.2X\r\n", ( uint16_t ) master_id[ 3 ],
                                                              ( uint16_t ) master_id[ 2 ],
                                                              ( uint16_t ) master_id[ 1 ],
                                                              ( uint16_t ) master_id[ 0 ] );

#endif
}

Application Task

Depending on the selected mode, it reads all the received data or sends a desired message every 3 seconds. All data is being displayed on the USB UART.


void application_task ( void )
{
#ifdef END_NODE
    strcpy( tmp_msg.payload, TEXT_TO_SEND );

    lr3_tx_msg.data_in = &tmp_msg.payload[ 0 ];
    lr3_tx_msg.n_bytes = strlen( TEXT_TO_SEND );
    lr3_tx_msg.destination_id = LR3_BROADCAST_MESSAGE;
    lr3_tx_msg.option = LR3_UNCONFIRMED_DATA_TX;
    if ( lr3_tx_message( &lr3, &lr3_tx_msg ) == 0 )
    {
        log_printf( &logger, "Message: \"%s\" sent to MASTER...\r\n", ( uint8_t * ) TEXT_TO_SEND );
        log_printf( &logger, "------------------------\r\n" );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif
#ifdef MASTER
    lr3_read_message_process( &lr3 );
#endif 
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LR3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Accel 13 click

5

Accel 13 Click features an ultra-low power triaxial accelerometer sensor with embedded intelligence, labeled as the IIS2DLPC.

[Learn More]

DAC 8 click

0

DAC 8 Click is a compact add-on board that contains a fully-featured, general-purpose voltage-output digital-to-analog converter.

[Learn More]

CAN Bus click

0

CAN Bus Click is a compact add-on board that provides a link between the CAN protocol controller and the physical wires of the bus lines in a control area network (CAN). This board features the MAX13054, an industry-standard, high-speed CAN transceiver with extended ±80V fault protection from Maxim Integrated.

[Learn More]